Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2175–2183 | Cite as

Improvement of Interlaminar Fracture Toughness in Glass Fiber Reinforced Plastic Laminates with Inorganic Nanofiber Sheet Interleaf

  • Ning WuEmail author
  • Jie Yang
  • Shanshan Zheng
  • Jing Wang
  • Li ChenEmail author
Article
  • 3 Downloads

Abstract

The present study developed a new type of nanofibrous structure-TiO2 nanofiber sheets (TNFS) to increase the interlaminar fracture toughness of glass fiber reinforced polymer (GFRP) laminates. SEM was employed to characterize the nanofibers before and after calcination. In order to quantify TNFS, the thickness and the crevice area of TNFS were analyzed, the results showed that the thickness and the proportion of crevice area were increased with the increase of TNFS contents. Mode I and Mode II interlaminar fracture toughness were investigated for GFRP laminates toughened by different mass fraction of TNFS. The highest Mode I fracture toughness value achieved by inserting 5 wt.% TNFS in the interleaf. GIc value was 74.35 % higher than those of base GFRP laminates. Meanwhile, with 6 wt.% addition of TNFS, the GFRP laminates showed the highest Mode II fracture toughness, which is 60.76 % higher than those of base GFRP laminates. The improvement mechanism of toughness was illustrated by the fracture surface analysis of TNFS interlayered laminates.

Keywords

TiO2 nanofiber sheet Laminates Fracture toughness Fracture surface analysis Interlayer toughing mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51403153), Project of Tianjin University Innovation Team (No.TD13-5043) and Natural Science Foundation of Tianjin City (No.18JCQNJC73200). We gratefully acknowledge the assistance of Prof. Xupin Zhuang for his kindly help on the electrospinning technical support. We also appreciate D.S.W Gunasekara for her kindly helping to proofread this paper.

References

  1. 1.
    A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, Compos. Struct., 53, 21 (2001).Google Scholar
  2. 2.
    L. C. Hollaway, Constr. Build. Mater., 24, 2419 (2010).CrossRefGoogle Scholar
  3. 3.
    R. Palazzetti, A. Zucchell, and I. Trendafilova, Compos. Struct., 106, 661 (2013).CrossRefGoogle Scholar
  4. 4.
    K. T. Tan, N. Watanabe, and Y. Iwahori, J. Reinf. Plast. Compos., 30, 99 (2011).CrossRefGoogle Scholar
  5. 5.
    L. W. Byrd and V. Birman, Compos. Part B, 37, 365 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Kravchenko, O. Kravchenko, M. Wortmann, M. Pietrek, P. Horst, and R. B. Pipes, Compos. Part A, 54, 98 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Mouritz, M. Bannister, P. Falzon, and K. Leong, Compos. Part A, 30, 1445 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Mall, D. W. Katwyk, R. L. Bolick, A. D. Kelkar, and D. C. Davis, Compos. Struct., 90, 201 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Almuhammadi, M. Alfano, Y. Yang, and G. Lubineau, Mater. Des., 53, 921 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Sui, J. Shi, H. Yao, and Z. Xu, Compos. Part A, 92, 134 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Arai, Y. Noro, K. I. Sugimoto, and M. Endo, Compos. Sci. Technol., 68, 516 (2008).CrossRefGoogle Scholar
  12. 12.
    T. Brugo and R. Palazzetti, Compos. Struct., 154, 172 (2016).CrossRefGoogle Scholar
  13. 13.
    H. M. Ning, Y. Li, J. H. Li, N. Hu, Y. L. Liu, L. K. Wu, and F. Liu, Compos. Part A, 68, 226 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Kostagiannakopoulou, T. H. Loutas, G. Sotiriadis, A. Markou, and V. Kostopoulos, Compos. Sci. Technol., 118, 217 (2015).CrossRefGoogle Scholar
  15. 15.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  16. 16.
    Y. A. Dzenis and D. H. Reneker, U. S. Patent, 6265333 (2001).Google Scholar
  17. 17.
    R. Neppalli, C. Marega, A. Marigo, M. P. Bajgai, H. Y. Kim, and V. Causin, Eur. Polym. J., 46, 968 (2010).CrossRefGoogle Scholar
  18. 18.
    G. Li, P. Li, C. Zhang, Y. H. Yu, H. Y. Liu, S. Zhang, X. L. Jia, X. P. Yang, Z. M. Xue, and S. K. Ryu, Compos. Sci. Technol., 68, 987 (2008).CrossRefGoogle Scholar
  19. 19.
    J. Zhang, T. Lin, and X. G. Wang, Compos. Sci. Technol., 70, 1660 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Sihn, Y. K. Ran, W. Huh, K. H. Lee, and A. K. Roy, Compos. Sci. Technol., 68, 673 (2008).CrossRefGoogle Scholar
  21. 21.
    H. Saghafi, S. R. Ghaffarian, T. M. Brugo, G. Minak, A. Zucchelli, and H. A. Saghafi, Compos. Part B, 101, 116 (2016).CrossRefGoogle Scholar
  22. 22.
    S. V. D. Heijden, L. Daelemans, K. D. Bruycker, R. Simal, L. D. Baere, W. V. Paepegem, H. Rahier, and K. D. Clerck, Compos. Struct., 159, 12 (2017).CrossRefGoogle Scholar
  23. 23.
    K. Bilge, Y. Yorulmaz, F. Javanshour, A. Urkmez, B. Yilmaz, E. Simsek, and M. Papila, Compos. Sci. Technol., 151, 310 (2017).CrossRefGoogle Scholar
  24. 24.
    N. Zheng, Y. Huang, H. Y. Liu, J. Gao, and Y. M. Mai, Compos. Sci. Technol., 140, 8 (2017).CrossRefGoogle Scholar
  25. 25.
    K. Ruan, Y. Guo, Y. Tang, Y. Zhang, J. Zhang, M. He, J. Kong, and J. Gu, Compos. Commun., 10, 68 (2018).CrossRefGoogle Scholar
  26. 26.
    J. Gu, Z. Lv, Y. Wu, Y. Guo, L. Tian, H. Qiu, W. Li, and Q. Zhang, Compos. Part A, 94, 209 (2017).CrossRefGoogle Scholar
  27. 27.
    G. Luo, G. Liu, Y. Chen, W. Liang, G. Liu, Y. Niu, and G. Li, Compos. Sci. Technol., 165, 198 (2018).CrossRefGoogle Scholar
  28. 28.
    Y. Tang, J. Gu, and T. Bai, Fiber. Polym., 13, 1249 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Tang, W. Dong, L. Tang, Y. Zhang, J. Kong, and J. Gu, Compos. Commun., 8, 36 (2018).CrossRefGoogle Scholar
  30. 30.
    L. Tang, J. Dang, M. He, J. Li, J. Kong, Y. Tang, and J. Gu, Compos. Sci. Technol., 169, 120 (2019).CrossRefGoogle Scholar
  31. 31.
    J. Gu, Y. Li, C. Liang, Y. Tang, L. Tang, Y. Zhang, J. Kong, H. Liu, and Z. Guo, J. Mater. Chem., C, 6, 7652 (2018).CrossRefGoogle Scholar
  32. 32.
    J. Gu, T. Bai, J. Dang, J. Feng, and Q. Zhang, Fiber. Polym., 14, 781 (2013).CrossRefGoogle Scholar
  33. 33.
    Y. Tang, J. Gu, and T. Bai, Fiber. Polym., 13, 1249 (2012).CrossRefGoogle Scholar
  34. 34.
    R. Sadeghian, S. Gangireddy, B. Minaie, and K. T. Hsiao, Compos. Part A, 37, 1787 (2006).CrossRefGoogle Scholar
  35. 35.
    A. D. Kelkar, R. Mohan, R. Bolick, and S. Shendokar, Mater. Sci. Eng., B, 168, 85 (2010).CrossRefGoogle Scholar
  36. 36.
    L. Liu, Y. M. Liang, G. Y. Xu, H. S. Zhang, and Z. M. Huang, J. Reinf. Plast. Compos., 27, 1147 (2008).CrossRefGoogle Scholar
  37. 37.
    Testing Methods for Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics (JIS K 7086), Japanese Standards Association, Japan, 1993.Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Composite MaterialTianjin Polytechnic UniversityTianjinChina

Personalised recommendations