Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2032–2041 | Cite as

Performance of Water-immiscible Silk Fibroin Based Hydrogel as Underwater Biomedical Adhesive

  • Meihua Yuan
  • Sheng YanEmail author
  • Han Liu
  • S. C. Kundu
  • Yurong Cai
  • Juming YaoEmail author
Article
  • 10 Downloads

Abstract

The shortcomings of the conventional wound closures like poor wet adhesion strength cause a hydration-persuaded softening, dissolution and viscosity of the adhesives. This happens especially due to the changes in viscosity of the adhesive during underwater surgical operations, which drive the research attention on artificial biomedical adhesives. The inspiration obtained from the natural protein-based adhesives of marine organisms, we develop a water-immiscible silk protein fibroin based bioadhesive with the assistance of polyethyleneglycol. The viscosity of the fibroin based bioadhesive can be modified to meet the application requirement. We adjust the reaction factors like varying the raw materials ratios, pH and gelation time. The fabricated bioadhesive exhibits a high dry adhesive strength of about 120 kPa and an enhanced wet adhesive toughness of about 150 kPa. The adhesive mechanism of the material is also proposed. This simplistic green method makes the way for obtaining fibroin based bioadhesive as and when needed. The findings promise the potentiality of the silk fibroin-based biomedical adhesive in future clinical applications.

Keywords

Silk fibroin PEG Viscosity Strength Underwater bioadhesive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (51672251) and Zhejiang Top Priority Discipline of Textile Science and Engineering (2015KF10 and 2015KF23). SCK presently holds an ERA Chair Full Professor position at 3B’s Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Portugal, supported by European Union Framework Programme for Research and Innovation HORIZON 2020 under grant agreement n° 668983 — FoReCaST.

Supplementary material

12221_2019_1206_MOESM1_ESM.pdf (154 kb)
Performance of Water-immiscible Silk Fibroin Based Hydrogel as Underwater Biomedical Adhesive

References

  1. 1.
    T. G. Weiser, S. E. Regenbogen, K. D. Thompson, A. B. Haynes, S. R. Lipsitz, W. R. Berry, and A. A. Gawande, The Lancet, 372, 139 (2008).CrossRefGoogle Scholar
  2. 2.
    L. P. Bré, Y. Zheng, A. P. Pêgo, and W. Wang, Biomater. Sci., 1, 239 (2013).CrossRefGoogle Scholar
  3. 3.
    A. J. Singer, J. V. Quinn, and J. E. Hollander, Am. J. Emerg. Med., 26, 490 (2007).CrossRefGoogle Scholar
  4. 4.
    A. P. Duarte, J. F. Coelho, J. C. Bordado, M. T. Cidade, and M. H. Gil, Prog. Polym. Sci., 37, 1031 (2012).CrossRefGoogle Scholar
  5. 5.
    S. P. Miguel, D. R. Figueira, D. Simões, M. P. Ribeiro, P. Coutinho, P. Ferreira, and I. J. Correia, Colloid. Surface B., 169, 60 (2018).CrossRefGoogle Scholar
  6. 6.
    M. J. Brennan, B. F. Kilbride, J. J. Wilker, and J. C. Liu, Biomaterials, 124, 116 (2017).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Comyn, Int. J. Adhes. Adhes, 22, 487 (2002).CrossRefGoogle Scholar
  8. 8.
    L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L. Weng, H. Zhang, Y. Tang, F. Ren, C. Zhao, G. Sun, R. Liang, and Z. Li, ACS Nano., 11, 2561 (2017).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou, and X. Lu, Adv. Funct. Mater., 28, 1704195 (2018).CrossRefGoogle Scholar
  10. 10.
    R. J. Stewart, T. C. Ransom, and V. Hlady, J. Polym. Sci. Pol. Phys., 49, 757 (2011).CrossRefGoogle Scholar
  11. 11.
    H. J. Kim, B. H. Hwang, S. Lim, B. H. Choi, S. H. Kang, and H. J. Cha, Biomaterials, 72, 104 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    L. Han, L. Yan, M. Wang, K. Wang, L. Fang, J. Zhou, F. Ren, and X. Lu, Chem. Mater., 30, 5561 (2018).CrossRefGoogle Scholar
  13. 13.
    L. Han, L. Yan, K. Wang, L. Fang, H. Zhang, Y. Ding, L. Weng, J. Xu, J. Weng, Y. Liu, F. Ren, and X. Lu, NPG Asia Mater., 9, e372 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, W. C. Chan, Y. Tang, T. L. Weng, and H. Yuan, Small, 13, 1601916 (2017).CrossRefGoogle Scholar
  15. 15.
    S. Kaur, G. M. Weerasekare, and R. J. Stewart, ACS Appl. Mater. Inter, 3, 941 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Lim, Y. S. Choi, D. G. Kang, Y. H. Song, and H. J. Cha, Biomaterials, 31, 3715 (2010).PubMedCrossRefGoogle Scholar
  17. 17.
    C. S. Wang, N. N. Ashton, R. B. Weiss, and R. J. Stewart, Insect. Biochem. Molec., 54, 69 (2014).CrossRefGoogle Scholar
  18. 18.
    B. Petersen, A. Barkun, S. Carpenter, P. Chotiprasidhi, R. Chuttani, W. Silverman, N. Hus sain, J. Liu, G. Taitelbaum, and G. G. Ginsberg, Gastrointest. Endosc., 60, 327 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    B. Zhu, H. Wang, W. R. Leow, Y. Cai, X. J. Loh, M. Y. Han, and X. Chen, Adv. Mater., 28, 4250 (2016).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Jain, S. K. Singh, S. K. Arya, S. C. Kundu, and S. Kapoor, ACS Biomater. Sci., Eng. doi: https://doi.org/10.1021/acsbiomaterials.8b0109 (2018).
  21. 21.
    D. Huang, L. Wang, Y. Dong, X. Pan, G. Li, and C. Wu, Eur. J. Pharm. Biopharm, 88, 104 (2014).PubMedCrossRefGoogle Scholar
  22. 22.
    W. Jun, L. Lin, Y. Cai, and J. Yao, Mini-rev. Med. Chem., 13, 1501 (2013).PubMedCrossRefGoogle Scholar
  23. 23.
    N. Sun, R. Lei, J. Xu, S. C. Kundu, Y. Cai, J. Yao, and Q. Ni, J. Mater. Sci., 54, 3319 (2019).CrossRefGoogle Scholar
  24. 24.
    K. A. Burke, M. A. Brenckle, D. L. Kaplan, and F. G. Omenetto, ACS Appl. Mater. Inter., 8, 16218 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Nawae, J. Meesane, N. Muensit, and C. Daengngam, Mater. Des., 160, 1158 (2018).CrossRefGoogle Scholar
  26. 26.
    K. Yu, G. Lan, B. Lu, J. Liu, J. Chen, F. Dai, and D. Wu, J. Mater. Sci., 52, 5435 (2017).CrossRefGoogle Scholar
  27. 27.
    G. Cheng, Z. Davoudi, X. Xing, X. Yu, X. Cheng, Z. Li, H. Deng, and Q. Wang, ACS Biomater. Sci. Eng., 4, 2704 (2018).CrossRefGoogle Scholar
  28. 28.
    S. Selvaraj and N. N. Fathima, ACS Appl. Mater. Inter., 9, 5916 (2017).CrossRefGoogle Scholar
  29. 29.
    L. Nilebäck, D. Chouhan, R. Jansson, M. Widhe, B. B. Mandai, and M. Hedhammar, ACS Appl. Mater. Inter., 9, 31634 (2017).CrossRefGoogle Scholar
  30. 30.
    A. Deng, Y. Yang, S. Du, and S. Yang, Biomater. Sci., 6, 2197 (2018).PubMedCrossRefGoogle Scholar
  31. 31.
    Q. Zhang, S. Chen, R. You, Z. Tariq, J. Huang, M. Li, and S. Yan, Fiber. Polym., 18, 1056 (2017).CrossRefGoogle Scholar
  32. 32.
    Q. Lu, Y. Huang, M. Li, B. Zuo, S. Lu, J. Wang, H. Zhu, and D. L. Kaplan, Acta. Biomater., 7, 2394 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    U. J. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, Biomaterials, 26, 2775 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    S. Bai, X. Zhang, Q. Lu, W. Sheng, L. Liu, B. Dong, D. Kaplan, and H. Zhu, Biomacromolecules, 15, 3044 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Y. Yamada and J. P. Schneider, Biomacromolecules, 17, 2634 (2016).PubMedCrossRefGoogle Scholar
  36. 36.
    D. Su, M. Yao, J. Liu, Y. Zhong, X. Chen, and Z. Shao, ACS Appl. Mater. Inter., 9, 17489 (2017).CrossRefGoogle Scholar
  37. 37.
    Y. Wu, Z. Kang, Z. Tian, M. Wu, and J. Wang, Polymers, 9, 669 (2017).PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, Nat. Protoc., 6, 1612 (2011).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Asakura, A. Nishimura, S. Kametani, S. Kawanishi, A. Aoki, F. Suzuki, H. Kaji, and A. Naito, Biomacromolecules, 18, 1965 (2017).PubMedCrossRefGoogle Scholar
  40. 40.
    Z. Yin, F. Wu, Z. Zheng, D. L. Kaplan, S. C. Kundu, and S. Lu, ACS Biomater. Sci. Eng., 3, 2617 (2017).CrossRefGoogle Scholar
  41. 41.
    T. Zhong, Z. Xie, C. Deng, M. Chen, Y. Gao, and B. Zuo, J. Appl. Polym. Sci., 127, 2019 (2013).CrossRefGoogle Scholar
  42. 42.
    F. Eslah, M. Jonoobi, M. Faezipour, M. Afsharpour, and A. A. Enayati, Int. J. Adhes. Adhes., 71, 48 (2016).CrossRefGoogle Scholar
  43. 43.
    K. Yamada, T. Chen, G. Kumar, O. Vesnovsky, L. T. Topoleski, and G. F. Payne, Biomacromolecules, 1, 252 (2000).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Cencer, Y. Liu, A. Winter, M. Murley, H. Meng, and B. P. Lee, Biomacromolecules, 15, 2861 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    V. Bhagat and M. L. Becker, Biomacromolecules, 18, 3009 (2017).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of Plastic Surgery, Zhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
  3. 3.3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoGuimaraesPortugal

Personalised recommendations