Advertisement

Fibers and Polymers

, Volume 20, Issue 7, pp 1424–1435 | Cite as

Color Performance, Durability and Handle of Inkjet-Printed and UV-Cured Photochromic Textiles for Multi-Colored Applications

  • Sina SeipelEmail author
  • Junchun Yu
  • Martina Viková
  • Michal Vik
  • Marie Koldinská
  • Antonín Havelka
  • Vincent A. Nierstrasz
Open Access
Article
  • 140 Downloads

Abstract

The development and design of novel functional and smart textile materials such as textile sensors and multicolored systems based on photochromic dyes necessitate controls of color intensities, switching speeds, and material durability. Precise control and synchronization of dye kinetics are important for multi-colored photochromic applications especially. However, durability towards abrasion and washing should not be compromised on if we aim to design reliable future textile products. In this study, two different commercial photochromic dyes — a naphthopyran and a spirooxazine-based dye — have been applied on PET fabric by inkjet printing and UV-LED curing. The photochromic textiles’ color behavior, fastness to abrasion and washing, and handle are evaluated using spectrophotometry, scanning electron microscopy, and Kawabata evaluation system. Despite a decrease in color performance after washing, the photochromic inkjet print is effective and barely influences the textile structure. Reduced rigidity of the host matrix promoted higher color yields and faster dye kinetics, but also improved durability towards abrasion and washing. In order to synchronize kinetics of the different dye types for multi-colored applications, distinct curing conditions are preferable, which, however, result in varying print durability. In the design of multi-colored photochromic textiles, dye kinetics, and durability have to be balanced.

Keywords

Inkjet printing UV curing Textile sensor Photochromic Durability 

Notes

Acknowledgements

The authors are grateful for the support from Borås stad, TEKO (The Swedish Textile and Clothing Industries Association), Myfab and Sparbanksstiftelsen Sjuhärad for enabling this research.

References

  1. 1.
    C. Lang-Koetz, N. Pastewski, and H. Rohn, Chem. Eng. Technol., 33, 559 (2010).Google Scholar
  2. 2.
    M. Aldib, Color. Technol., 131, 172 (2015).CrossRefGoogle Scholar
  3. 3.
    R. Fu, J. Shi, E. Forsythe, and M. Srour, Opt. Eng., 55, 124105 (2016).CrossRefGoogle Scholar
  4. 4.
    A. F. Little and R. M. Christie, Color. Technol., 127, 275 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Viková, “Photochromic Textiles”, Heriot-Watt University, Edinburgh, 2011.Google Scholar
  6. 6.
    J. C. Crano and R. J. Guglielmetti, “Organic Photochromic and Thermochromic Compounds”, Springer, New York, 2006.Google Scholar
  7. 7.
    R. Pardo, M. Zayat, and D. Levy, J. Sol-Gel Sci. Technol., 63, 400 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Seipel, J. Yu, A. P. Periyasamy, M. Viková M. Vik, and V. A. Nierstrasz, RSC Adv., 8, 28395 (2018).CrossRefGoogle Scholar
  9. 9.
    F. Ercole, N. Malic, S. Harrisson, T. P. Davis, and R. A. Evans, Macromolecules, 43, 249 (2010).CrossRefGoogle Scholar
  10. 10.
    N. Malic, I. J. Dagley, and R. A. Evans, Dyes Pigment., 97, 162 (2013).CrossRefGoogle Scholar
  11. 11.
    N. Malic, J. A. Campbell, and R. A. Evans, Macromolecules, 41, 1206 (2008).CrossRefGoogle Scholar
  12. 12.
    G. Such, R. A. Evans, L. H. Yee, and T. P. Davis, J. Macromol. Sci., Polym. Rev., 43, 547 (2003).CrossRefGoogle Scholar
  13. 13.
    R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, and D. A. Lewis, Nat. Mater., 4, 249 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    F. Ercole, T. P. Davis, and R. A. Evans, Macromolecules, 42, 1500 (2009).CrossRefGoogle Scholar
  15. 15.
    K. Mutoh, Y. Kobayashi, and J. Abe, Dyes Pigments, 137, 307 (2017).CrossRefGoogle Scholar
  16. 16.
    J. H. Kim, S. Y. Ban, Q. Zhang, G. W. Kim, M. J. Cho, and D. H. Choi, Mol. Cryst. Liq. Cryst., 445, 307/[597] (2006).Google Scholar
  17. 17.
    M. Parhizkar, Y. Zhao, Z. Xu, A. Gestos, Z. Xie, Z. Liu, and T. Lin, Fiber. Polym., 16, 2318 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Vik and M. Viková, “A Method and Device for Fatigue Testing of Photochromic, Fluorescent or Phosphorescent Dyes”, Technicka Univerzita V Liberci, 2016.Google Scholar
  19. 19.
    M. Viková and M. Vik, Adv. Chem. Eng. Sci., 1, 224 (2011).CrossRefGoogle Scholar
  20. 20.
    A. Ranjkesh, M.-K. Park, H. D. Park, J.-S. Park, J.-C. Choi, S.-H. Kim, and H.-R. Kim, Sensors, 16, 38 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Larkowska, M. Wuebbenhorst, and S. Kucharski, Int. J. Polym. Sci., 2011, 6 (2011).CrossRefGoogle Scholar
  22. 22.
    S. M. R. Billah, R. M. Christie, and R. Shamey, Color. Technol., 124, 223 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Natali and S. Giordani, Chem. Soc. Rev., 41, 4010 (2012).CrossRefPubMedGoogle Scholar
  24. 24.
    H. Xia, K. Xie, and G. Zou, Molecules, 22, 2236 (2017).CrossRefPubMedCentralGoogle Scholar
  25. 25.
    J. Zhou, Y. Li, Y. Tang, F. Zhao, X. Song, and E. Li, J. Photochem. Photobiol. A: Chem., 90, 117 (1995).CrossRefGoogle Scholar
  26. 26.
    G. K. Such, R. A. Evans, and T. P. Davis, Macromolecules, 37, 9664 (2004).CrossRefGoogle Scholar
  27. 27.
    X. Zhao, G. Wang, and K. Zhang, J. Appl. Polym. Sci., 124, 4157 (2011).CrossRefGoogle Scholar
  28. 28.
    M. Kert and M. Gorjanc, Color. Technol., 133, 491 (2017).CrossRefGoogle Scholar
  29. 29.
    A. P. Periyasamy, M. Vikova, and M. Vik, Text. Prog., 49, 53 (2017).CrossRefGoogle Scholar
  30. 30.
    M. B. V. Shukla, D. K. Singh, and R. Shukla, Pigm. Resin Technol., 33, 272 (2004).CrossRefGoogle Scholar
  31. 31.
    O. A. Hakeim, A. A. Arafa, M. K. Zahran, and L. A. W. Abdou, Colloids Surf. Physicochem. Eng. Aspects, 447, 172 (2014).CrossRefGoogle Scholar
  32. 32.
    M. N. Karim, S. Afroj, M. Rigout, S. G. Yeates, and C. Carr, J. Mater. Sci., 50, 4576 (2015).CrossRefGoogle Scholar
  33. 33.
    Y. Guan, B. Tawiah, L. Zhang, C. Du, and S. Fu, Colloids Surf. Physicochem. Eng. Aspects, 462, 90 (2014).CrossRefGoogle Scholar

Copyright information

© The Author(s), corrected publication 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sina Seipel
    • 1
    Email author
  • Junchun Yu
    • 1
  • Martina Viková
    • 2
  • Michal Vik
    • 2
  • Marie Koldinská
    • 3
  • Antonín Havelka
    • 3
  • Vincent A. Nierstrasz
    • 1
  1. 1.Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and BusinessUniversity of BoråsBoråsSweden
  2. 2.Department of Material Engineering, Faculty of Textile EngineeringTechnical University of LiberecLiberecCzech Republic
  3. 3.Department of Clothing Technology, Faculty of Textile EngineeringTechnical University of LiberecLiberecCzech Republic

Personalised recommendations