Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2439–2448 | Cite as

Thermal Analysis on the Stabilization Behavior of Ternary Copolymers Based on Acrylonitrile, Methyl Acrylate and Itaconic Acid

  • Do Un Park
  • Ji Hyeong Ryu
  • Nam Koo Han
  • Won Ho Park
  • Young Gyu JeongEmail author
Article
  • 24 Downloads

Abstract

Polyacrylonitrile (PAN)-based copolymers are widely used as a precursor for manufacturing high performance carbon fibers via a series of processes of thermal stabilization, carbonization, and graphitization. We have recently synthesized a series of copolymers with various compositions of acrylonitrile (AN), methyl acrylate (MA) and itaconic acid (IA) by using an efficient aqueous suspension polymerization. In this study, the influences of MA and IA units on thermal stabilization behavior of AN/MA/IA-based terpolymers has been investigated by thermal analyses using DSC and TGA. It was found that the glass transition temperatures (Tg) of AN/MA/IA-based terpolymers with a constant AN content increased with the IA content due to a specific interaction between carboxylic acid and nitrile groups, while the MA unit played a role of lowering Tg of the copolymers owing to the interruption of AN sequence with a strong dipole-dipole interaction. The exothermic peaks of DSC curves as well as the weight loss of TGA/DTG curves under air condition revealed that the IA unit in AN/MA/IA-based terpolymers contributed to accelerate the oxidation reaction especially under air condition and also to slow down the following cyclization and dehydrogenation reactions including isomerization, unlike PAN homopolymer and AN/MA-based bipolymers. On the other hand, the MA unit in AN/MA-based bipolymers and AN/MA/IA-based terpolymers served as a delaying agent on the overall thermal stabilization reactions of oxidation, cyclization and dehydrogenation.

Keywords

Polyacrylonitrile Terpolymers Thermal stabilization Thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Rangarajan, V. A. Bhanu, D. Godshall, G. L. Wilkes, J. E. McGrath, and D. G. Baird, Polymer, 43, 2699 (2002).CrossRefGoogle Scholar
  2. 2.
    R. Devasia, C. P. Reghunadhan Nair, and K. N. Ninan, Polym. Int., 54, 1110 (2005).CrossRefGoogle Scholar
  3. 3.
    H. J. Lee, J. S. Won, S. C. Lim, T. S. Lee, J. Y. Yoon, and S. G. Lee, Text. Sci. Eng., 53, 103 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Lee, J. Kim, B.-C. Ku, J. Kim, and H.-I. Joh, Adv. Chem. Eng. Sci., 2, 275 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Burkanudeen, G. S. Krishnan, and N. Murali, J. Therm. Anal. Calorim., 112, 1261 (2013).CrossRefGoogle Scholar
  6. 6.
    S. N. A. M. Jamil, R. Daik, and I. Ahmad, Materials, 7, 6207 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Y. Ji, Y. G. Jeong, and W. H. Pakr, Text. Sci. Eng., 53, 285 (2016).CrossRefGoogle Scholar
  8. 8.
    Q. Ouyang, L. Cheng, H. Wang, and K. Li, Polym. Degrad. Stabil., 93, 1415 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Xue, J. Liu, and J. Liang, Polym. Deg. Stabil., 98, 219 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Arbab and A. Zeinolebadi, Polym. Degrad. Stabil., 98, 2537 (2013).CrossRefGoogle Scholar
  11. 11.
    M. C. Paiva, P. Kotasthane, D. D. Edie, and A. A. Ogale, Carbon, 41, 1399 (2003).CrossRefGoogle Scholar
  12. 12.
    A. V. Shlyakhtin, D. A. Lemenovskii, and I. E. Nifant’ev, Mendeleev Commun., 23, 277 (2013).CrossRefGoogle Scholar
  13. 13.
    S. R. Hutchinson, A. E. Tonelli, B. S. Gupta, and D. R. Buchanan, J. Mater. Sci., 43, 5143 (2008).CrossRefGoogle Scholar
  14. 14.
    P. Rangarajan, J. Yang, V. A. Bhanu, D. Godshall, J. E. McGrath, G. Wilkes, and D. G. Baird, J. Appl. Polym. Sci., 85, 69 (2002).CrossRefGoogle Scholar
  15. 15.
    Y. H. Bang, S. Lee, and H. H. Cho, J. Appl. Polym. Sci., 68, 2205 (1998).CrossRefGoogle Scholar
  16. 16.
    V. A. Bhanu, P. Rangarajan, K. Wiles, M. Bortner, M. Sankarpandian, D. Godshall, T. E. Glass, A. K. Banthia, J. Yang, and G. Wilkes, Polymer, 43, 4841 (2002).CrossRefGoogle Scholar
  17. 17.
    S.-P. Rwei, T.-F. Way, and Y.-S. Hsu, Polym. Deg. Stabil., 98, 2072 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Eom, C. Kim, and B. C. Kim, Macromol. Res., 25, 262 (2017).CrossRefGoogle Scholar
  19. 19.
    N. U. Nguyen-Thai and S. C. Hong, Macromolecules, 46, 5882 (2013).CrossRefGoogle Scholar
  20. 20.
    N. U. Nguyen-Thai and S. C. Hong, Carbon, 69, 571 (2014).CrossRefGoogle Scholar
  21. 21.
    S. N. A. M. Jamil, R. Daik, and I. Ahmad, Int. J. Chem. Eng. Appl., 3, 416 (2012).Google Scholar
  22. 22.
    N. Han, X. X. Zhang, X. C. Wang, and N. Wang, Macromol. Res., 18, 144 (2010).CrossRefGoogle Scholar
  23. 23.
    D. U. Park, N. K. Han, J. H. Ryu, W. H. Park, and Y. G. Jeong, Fiber. Polym., 19, 2007 (2018).CrossRefGoogle Scholar
  24. 24.
    P. Bajaj, T. V. Sreekumar, and K. Sen, J. Appl. Polym. Sci., 79, 1640 (2001).CrossRefGoogle Scholar
  25. 25.
    R. Devasia, C. P. Reghunadhan Nair, and K. N. Ninan, Eur. Polym. J., 39, 537 (2003).CrossRefGoogle Scholar
  26. 26.
    K. B. Wiles, V. A. Bhanu, A. J. Pasquale, T. E. Long, and J. E. McGrath, J. Polym. Sci. Part A: Polym. Chem., 42, 2994 (2004).CrossRefGoogle Scholar
  27. 27.
    R. Chûjô, H. Ubara, and A. Nishioka, Polym. J., 3, 670 (1972).CrossRefGoogle Scholar
  28. 28.
    S. N. A. M. Jamil, R. Daik, and I. Ahmad, J. Polym. Res., 14, 379 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Cetiner, S. Sen, B. Arman, and A. S. Sarac, J. Appl. Polym. Sci., 127, 3830 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Do Un Park
    • 1
  • Ji Hyeong Ryu
    • 1
  • Nam Koo Han
    • 1
  • Won Ho Park
    • 1
  • Young Gyu Jeong
    • 1
    Email author
  1. 1.Department of Advanced Organic Materials and Textile System EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations