Fibers and Polymers

, Volume 19, Issue 11, pp 2268–2277 | Cite as

A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton

  • Muhammad Tayyab NomanEmail author
  • Muhammad Azeem Ashraf
  • Hafsa Jamshaid
  • Azam Ali


Facile embedding of TiO2 nanoparticles onto cotton fabric has been successfully attained by ultraviolet light irradiations. The adhesion of nanoparticles with fibre surface, tensile behaviour and physicochemical changes before and after ultraviolet treatment were investigated by scanning electron microscopy, energy dispersive X-ray and inductive couple plasma-atomic emission spectroscopy. Experimental variables i.e. dosage of TiO2 nanoparticles, temperature of the system and time of ultraviolet irradiations were optimised by central composite design and response surface methodology. Moreover, two different mathematical models were developed for incorporated TiO2 onto cotton and tensile strength of cotton after ultraviolet treatment and used further to testify the obtained results. Self-clean fabric through a synergistic combination of cotton with highly photo active TiO2 nanoparticles was produced. Stability against ultraviolet irradiations and self-cleaning properties of the produced fabric were evaluated.


UV fixation Self-stabilization TiO2 Self-cleaning Nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Cai, W. R. Leow, X. Wang, Y. L. Wu, and X. Chen, Adv. Mater., 29, 1605529 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Ates, J. Solid State Electrochem., 20, 1509 (2016).CrossRefGoogle Scholar
  3. 3.
    L. K. Bogart, G. Pourroy, C. J. Murphy, V. Puntes, T. Pellegrino, D. Rosenblum, D. Peer, and R. Lévy, ACS Nano, 8, 3107 (2014).CrossRefGoogle Scholar
  4. 4.
    L. Wang, Q. Xiong, F. Xiao, and H. Duan, Biosens. Bioelectron., 89, 136 (2017).CrossRefGoogle Scholar
  5. 5.
    J. Xu, Y. Chen, L. Deng, J. Liu, Y. Cao, P. Li, H. Ran, Y. Zheng, and Z. Wang, Biomaterials, 106, 264 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Yin and B. Deng, J. Membr. Sci., 479, 256 (2015).CrossRefGoogle Scholar
  7. 7.
    I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz–Sigl, A. Hasmann, G. Gübitz, and A. Gedanken, Surf. Coat. Technol., 204, 54 (2009).CrossRefGoogle Scholar
  8. 8.
    M. T. Noman, J. Wiener, J. Saskova, M. A. Ashraf, M. Vikova, H. Jamshaid, and P. Kejzlar, Ultrason. Sonochem., 40, 41 (2018).CrossRefGoogle Scholar
  9. 9.
    R. Saravanan, S. Karthikeyan, V. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng., C, 33, 91 (2013).CrossRefGoogle Scholar
  10. 10.
    D. Caschera, F. Federici, T. de Caro, B. Cortese, P. Calandra, A. Mezzi, R. L. Nigro, and R. G. Toro, Appl. Surf. Sci., 427, 81 (2018).CrossRefGoogle Scholar
  11. 11.
    S. Landi, J. Carneiro, S. Ferdov, A. M. Fonseca, I. C. Neves, M. Ferreira, P. Parpot, O. S. Soares, and M. F. Pereira, J. Photochem. Photobiol. A: Chem., 346, 60 (2017).CrossRefGoogle Scholar
  12. 12.
    E. Pakdel, J. Wang, B. J. Allardyce, R. Rajkhowa, and X. Wang, Sep. Purif. Technol., 170, 92 (2016).CrossRefGoogle Scholar
  13. 13.
    Y. Xu, J. Sheng, X. Yin, J. Yu, and B. Ding, J. Colloid Interface Sci., 508, 508 (2017).CrossRefGoogle Scholar
  14. 14.
    A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 1, 1 (2000).CrossRefGoogle Scholar
  15. 15.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev., 114, 9919 (2014).CrossRefGoogle Scholar
  16. 16.
    Q. Cheng, C. Li, V. Pavlinek, P. Saha, and H. Wang, Appl. Surf. Sci., 252, 4154 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Abidi, E. Hequet, S. Tarimala, and L. L. Dai, J. Appl. Polym. Sci., 104, 111 (2007).CrossRefGoogle Scholar
  18. 18.
    I. Perelshtein, G. Applerot, N. Perkas, J. Grinblat, and A. Gedanken, Chem. Eur. J., 18, 4575 (2012).CrossRefGoogle Scholar
  19. 19.
    M. El–Rafie, A. Mohamed, T. I. Shaheen, and A. Hebeish, Carbohydr. Polym., 80, 779 (2010).CrossRefGoogle Scholar
  20. 20.
    A. Hebeish, M. El–Naggar, M. M. Fouda, M. Ramadan, S. S. Al–Deyab, and M. El–Rafie, Carbohydr. Polym., 86, 936 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili, Appl. Surf. Sci., 332, 665 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Long, L. Zheng, B. Tan, and H. Shu, Appl. Surf. Sci., 386, 434 (2016).CrossRefGoogle Scholar
  23. 23.
    M. P. Gashti and A. Almasian, Compos. Pt. B–Eng., 45, 282 (2013).CrossRefGoogle Scholar
  24. 24.
    M. P. Gashti, A. Elahi, and M. P. Gashti, Compos. Pt. BEng., 48, 158 (2013).CrossRefGoogle Scholar
  25. 25.
    M. T. Noman, J. Militky, J. Wiener, J. Saskova, M. A. Ashraf, H. Jamshaid, and M. Azeem, Ultrasonics, 83, 203 (2018).CrossRefGoogle Scholar
  26. 26.
    F. Lessan, M. Montazer, and M. Moghadam, Thermochim. Acta, 520, 48 (2011).CrossRefGoogle Scholar
  27. 27.
    W. A. Daoud, S. Leung, W. Tung, J. Xin, K. Cheuk, and K. Qi, Chem. Mater., 20, 1242 (2008).CrossRefGoogle Scholar
  28. 28.
    M. Montazer, F. Alimohammadi, A. Shamei, and M. K. Rahimi, Colloids. Surf. B: Biointerface., 89, 196 (2012).CrossRefGoogle Scholar
  29. 29.
    E. Pakdel and W. A. Daoud, J. Colloid Interf. Sci., 401, 1 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Muhammad Tayyab Noman
    • 1
    Email author
  • Muhammad Azeem Ashraf
    • 1
    • 2
  • Hafsa Jamshaid
    • 3
  • Azam Ali
    • 1
  1. 1.Department of Material EngineeringTechnical University of LiberecLiberecCzech Republic
  2. 2.Department of Fibre and Textile TechnologyUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of KnittingNational Textile UniversityFaisalabadPakistan

Personalised recommendations