Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2612–2621 | Cite as

Comparative Estimation of Fiber Diameter of Nanofibrous Membranes by Image Analysis Methods

  • Smita BahetiEmail author
  • Maros Tunak
Article
  • 12 Downloads

Abstract

The manual methods are often used for measurement of fiber diameter of electrospun membranes, however these methods are not suitable for online quality control. Although number of image analysis methods have been reported for automated measurement of fiber diameter, but there is no literature available regarding reliability, accuracy and simplicity of these measurements. In this study, the distance transform methods suggested by Pourdeyhimi and Ziabari, direct tracking method, DiameterJ software and Zhang method were compared for automated measurement of fiber diameter of electrospun nanofibrous membranes. From one way ANOVA, the difference between the results of fiber diameter was found highly significant. The mean and standard deviation of fiber diameter obtained in case of Ziabari method were extremely close to the results of manual method and also to the true values of the simulated image. Therefore, the more accurate estimation of fiber diameter was confirmed in case of Ziabari method.

Keywords

Fiber diameter Image analysis Distance transform DiameterJ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  2. 2.
    B. G. Xu and L. Yu, Text. Res. J., 67, 563 (1997).CrossRefGoogle Scholar
  3. 3.
    X. Yan and M. Gevelber, J. Electrostat., 68, 458 (2010).CrossRefGoogle Scholar
  4. 4.
    J. J. Stanger, N. Tucker, N. Buunk, and Y. B. Truong, Polym. Test., 40, 4 (2014).CrossRefGoogle Scholar
  5. 5.
    N. J. Schaub, S. J. Kirkpatrick, and R. J. Gilbert, Bionanoscience, 3, 329 (2013).CrossRefGoogle Scholar
  6. 6.
    B. Pourdeyhimi and R. Dent, Text. Res. J., 69, 233 (1999).CrossRefGoogle Scholar
  7. 7.
    M. Ziabari, V. Mottaghitalab, S. T. McGovern, and A. K. Haghi, Nanoscale Res. Lett., 2, 597 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Ziabari, V. Mottaghitalab, and A. K. Haghi, Brazilian J. Chem. Eng., 26, 53 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Chen, R. Wang, X. Zhang, and B. Yin, Procedia Eng., 15, 3516 (2011).CrossRefGoogle Scholar
  10. 10.
    X. M. Zhang, R. W. Wang, H. B. Wu, and B. Xu, J. Ind. Text., 43, 593 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Ziabari, V. Mottaghitalab, S. T. McGovern, and A. K. Haghi, Chinese Phys. Lett., 25, 3071 (2008).CrossRefGoogle Scholar
  12. 12.
    N. A. Hotaling, K. Bharti, H. Kriel, and C. G. Simon, Biomaterials, 61, 327 (2015).CrossRefGoogle Scholar
  13. 13.
    K. Bhargavi, Int. J. Innov. Res. Dev., 3, 234 (2014).Google Scholar
  14. 14.
    Y. Wan, L. Yao, and B. Xu, J. Eng. Fiber. Fabr., 7, 114 (2012).Google Scholar
  15. 15.
    B. Pourdeyhimi, R. Ramanathan, and R. Dent, Text. Res. J., 66, 713 (1996).CrossRefGoogle Scholar
  16. 16.
    M. S. Abdel-Ghani and G. A. Davies, Chem. Eng. Sci., 40, 117 (1985).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  1. 1.Department of Textile Evaluation, Faculty of Textile EngineeringTechnical University of LiberecLiberecCzech Republic

Personalised recommendations