Advertisement

Fibers and Polymers

, Volume 19, Issue 11, pp 2359–2364 | Cite as

Cotton Dyeing and Antibacterial Finishing Using Agricultural Waste by an Eco-friendly Process Optimized by Response Surface Methodology

  • Aminoddin HajiEmail author
  • Majid Nasiriboroumand
  • Sayyed Sadroddin Qavamnia
Article
  • 27 Downloads

Abstract

In this study, Berberis vulgaris L. wood as an agricultural waste was used for dyeing and functional finishing of cotton. To facilitate the attachment of natural dye, citric acid was used to create carboxylic acid functional groups on cotton fibers. The process of crosslinking of cotton fabric with citric acid was optimized in order to obtain the maximum dyeability with the cationic natural dye. The effects of three important factors including citric acid concentration, sodium hypophosphite concentration and curing temperature on the color strength of the dyed samples with woods of barberry tree were analyzed by response surface methodology and the optimum conditions for obtaining the highest color strength was obtained. The crosslinking of citric acid on cotton fibers was confirmed by FTIR spectroscopy. The dyed sample prepared under the optimum conditions of crosslinking showed good wash and light fastness properties besides very good antibacterial activity against gram-negative and gram-positive bacteria.

Keywords

Cotton Citric acid Natural dyeing Antibacterial Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. A. Andrews, Text. Chem. Color., 22, 63 (1990).Google Scholar
  2. 2.
    W. Yao, B. Wang, T. Ye, and Y. Yang, Ind. Eng. Chem. Res., 52, 16118 (2013).CrossRefGoogle Scholar
  3. 3.
    P. Tang, B. Ji, and G. Sun, Carbohydr. Polym., 147, 139 (2016).CrossRefGoogle Scholar
  4. 4.
    V. A. Dehabadi, H.–J. Buschmann, and J. S. Gutmann, Text. Res. J., 83, 1974 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.–L. Lam, C.–W. Kan, and C.–W. M. Yuen, Text. Prog., 44, 175 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Q. Yang, X. Wang, and I.–S. Kang, Text. Res. J., 67, 334 (1997).CrossRefGoogle Scholar
  7. 7.
    L. Yun and C. Q. Yang, Text. Res. J., 69, 685 (1999).CrossRefGoogle Scholar
  8. 8.
    G. Xiaohong and C. Q. Yang, Text. Res. J., 70, 64 (2000).CrossRefGoogle Scholar
  9. 9.
    C.–E. Zhou, C.–W. Kan, C.–W. M. Yuen, J. P. Matinlinna, J. K.–H. Tsoi, and Q. Zhang, Text. Res. J., 86, 2202 (2016).CrossRefGoogle Scholar
  10. 10.
    T. Gülümser, Ind. Text., 68, 275 (2017).Google Scholar
  11. 11.
    A. Haji, H. Barani, and S. S. Qavamnia, Micro Nano Lett., 8, 315 (2013).CrossRefGoogle Scholar
  12. 12.
    I. Oleksiewicz, R. Koźmínska, and A. Moscicki, Ind. Text., 67, 174 (2016).Google Scholar
  13. 13.
    A. Ali, N. H. A. Nguyen, V. Baheti, M. Ashraf, J. Militky, T. Mansoor, M. T. Noman, and S. Ahmad, J. Text. Inst., 109, 620 (2018).CrossRefGoogle Scholar
  14. 14.
    S. Bischof, S. Flincec Grgac, D. Katovic, and D. Brlek Gorski, AATCC Rev., 9, 37 (2009).Google Scholar
  15. 15.
    S. Bischof Vukušić, S. Flinčec Grgac, A. Budimir, and S. Kalenić, Croat. Med. J., 52, 68 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Budimir, S. Bischof Vukusic, and S. Grgac Flincec, Cellulose, 19, 289 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Adeel, M. Zuber, Fazal–ur Rehman, and K. M. Zia, Environ. Sci. Pollut. Res., 25, 11100 (2018).CrossRefGoogle Scholar
  18. 18.
    F. Rehman, S. Adeel, R. Hanif, M. Muneer, K. M. Zia, M. Zuber, M. A. Jamal, and M. K. Khosa, J. Nat. Fibers, 14, 63 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Haji, Cellul. Chem. Technol., 51, 975 (2017).Google Scholar
  20. 20.
    S. Adeel, T. Gulzar, M. Azeem, R. Fazal ur, M. Saeed, I. Hanif, and N. Iqbal, Radiat. Phys. Chem., 130, 35 (2017).CrossRefGoogle Scholar
  21. 21.
    T. Gulzar, S. Adeel, I. Hanif, F. Rehman, R. Hanif, M. Zuber, and N. Akhtar, J. Nat. Fibers, 12, 494 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Ben Ticha, W. Haddar, N. Meksi, A. Guesmi, and M. F. Mhenni, Carbohydr. Polym., 154, 287 (2016).CrossRefGoogle Scholar
  23. 23.
    N. Baaka, M. Ben Ticha, W. Haddar, M. T. P. Amorim, and M. F. Mhenni, Fiber. Polym., 19, 307 (2018).CrossRefGoogle Scholar
  24. 24.
    K. H. Prabhu, M. D. Teli, and N. Waghmare, Fiber. Polym., 12, 753 (2011).CrossRefGoogle Scholar
  25. 25.
    Ö. E. İşmal, Fiber. Polym., 18, 773 (2017).CrossRefGoogle Scholar
  26. 26.
    C.–W. Kan, C. K. Y. Lo, and W. S. Man, Color. Technol., 132, 4 (2016).CrossRefGoogle Scholar
  27. 27.
    J.–Y. Kang, J. Deivasigamani, and M. Sarmadi, AATCC Rev., 4, 28 (2004).Google Scholar
  28. 28.
    A. Haji, A. Mousavi Shoushtari, and M. Mirafshar, Color. Technol., 130, 37 (2014).CrossRefGoogle Scholar
  29. 29.
    A. Haji, Cellul. Chem. Technol., 47, 303 (2013).Google Scholar
  30. 30.
    A. Haji and A. M. Shoushtari, Ind. Text., 62, 244 (2011).Google Scholar
  31. 31.
    L.–C. Su, Z. Xie, Y. Zhang, K. T. Nguyen, and J. Yang, Front. Bioeng. Biotechnol., 2, 23 (2014).CrossRefGoogle Scholar
  32. 32.
    Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Aminoddin Haji
    • 1
    Email author
  • Majid Nasiriboroumand
    • 2
  • Sayyed Sadroddin Qavamnia
    • 1
  1. 1.Textile Engineering Department, Birjand BranchIslamic Azad UniversityBirjandIran
  2. 2.Department of CarpetShahid Bahonar University of KermanKermanIran

Personalised recommendations