Advertisement

Fibers and Polymers

, Volume 19, Issue 11, pp 2237–2244 | Cite as

Highly Dispersible Cellulose Nanofibrils Produced via Mechanical Pretreatment and TEMPO-mediated Oxidation

  • Liang Jiao
  • Huiyang Bian
  • Ying Gao
  • Xuliang Lin
  • Wenyuan Zhu
  • Hongqi DaiEmail author
Article
  • 50 Downloads

Abstract

Cellulose nanofibrils (CNFs) can prepare flexible nanomaterials with its large aspect ratio. Due to the supramolecular, cellulose fibers are difficultly dissociated to CNFs. In order to destroy this supramolecular structure and prepare high dispersible CNFs, the mechanical and chemical treatments are required. This study examined the effects of mechanical pretreatment and TEMPO-oxidation on the properties of CNFs preparing from bleached softwood kraft pulp. The total yield of TEMPO-oxidized cellulose nanofibrils (TOCNFs) reached 85 %. The morphology, carboxyl group content, crystallinity, surface charge, self-assembling properties, and optical transmittance of the corresponding TOCNFs suspension were investigated. The transmittance of TOCNFs suspension was 95.1 % at 600 nm wavelength and its corresponding ζ- potential was -61.3 mV, indicated that the strong electrostatic repulsion between TOCNFs was the most significant factor on the highly transparent TOCNFs suspension in water. Furthermore, the mostly negative charged TOCNFs obtained by freeze drying assembled into the finest and most uniform networked structure. Such highly transparent, functionalized, selfassembled cellulose nanofibrils are favorable in transparent films, flexible displays and electrochemistry materials.

Keywords

Cellulose nanofibrils Mechanical pretreatment TEMPO oxidation Carboxyl group content Uniformity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Zhu, W. Luo, P. N. Ciesielski, Z. J. Fang, J. Y. Zhu, G. Henriksson, M. E. Himmel, and L. B. Hu, Chem. Rev., 116, 9305 (2016).CrossRefGoogle Scholar
  2. 2.
    O. Nechyporchuk, M. N. Belgacem, and J. Bras, Ind. Crops Prod., 93, 2 (2016).CrossRefGoogle Scholar
  3. 3.
    R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, K. Uetani, S. Liu, X. Zhang, Y. Wang, P. Lu, T. Wei, Z. Fan, J. Shen, H. Yu, S. Li, Q. Zhang, Q. Li, J. Fan, N. Yang, Q. Wang, Y. Liu, J. Cao, J. Li, and W. Chen, ChemNanoMat, 3, 98 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Gen, ChemNanoMat, 3, 168 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Qing, R. Sabo, J. Y. Zhu, U. Agarwal, Z. Cai, and Y. Wu, Carbohydr. Polym., 97, 226 (2013).CrossRefGoogle Scholar
  7. 7.
    S. S. Nair, J. Y. Zhu, Y. Deng, and A. J. Ragauskas, J. Nanoparticle Res., 16, 2349 (2014).CrossRefGoogle Scholar
  8. 8.
    L. H. Chen, J. Y. Zhu, C. Baez, P. Kitin, and T. Elder, Green Chem., 18, 3835 (2016).CrossRefGoogle Scholar
  9. 9.
    W. X. Wang, M. D. Mozuch, R. C. Sabo, P. Kersten, J. Y. Zhu, and Y. C. Jin, Cellulose, 23, 1859 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Bian, L. Chen, R. Wang, and J. Y. Zhu, J. Visualized Experiments, e55079 (2017).Google Scholar
  11. 11.
    R. B. Wang, L. H. Chen, J. Y. Zhu, and R. D. Yang, Chemnanomat, 3, 328 (2017).CrossRefGoogle Scholar
  12. 12.
    W. Xu, H. Grénman, J. Liu, D. Kronlund, B. Li, P. Backman, J. Peltonen, S. Willför, A. Sundberg, and C. Xu, ChemNanoMat, 3, 109 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Fukuzumi, T. Saito, Y. Okita, and A. Isogai, Polym. Degrad. Stabil., 95, 1502 (2010).CrossRefGoogle Scholar
  14. 14.
    W. Adam, C. R. Saha–Moller, and P. A. Ganeshpure, Chem. Rev., 101, 3499 (2001).CrossRefGoogle Scholar
  15. 15.
    A. E. J. d. Nooy, A. C. Besemer, and H. V. Bekkum, Receuil des Travaux Chimiques des Pays–Bas, 113, 165 (1994).CrossRefGoogle Scholar
  16. 16.
    R. Tanaka, T. Saito, and A. Isogai, Int. J. Biol. Macromol., 51, 228 (2012).CrossRefGoogle Scholar
  17. 17.
    T. Isogai, T. Saito, and A. Isogai, Biomacromolecules, 11, 1593 (2010).CrossRefGoogle Scholar
  18. 18.
    J. Jiang, W. Ye, L. Liu, Z. Wang, Y. Fan, T. Saito, and A. Isogai, Biomacromolecules, 18, 288 (2017).CrossRefGoogle Scholar
  19. 19.
    T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).CrossRefGoogle Scholar
  20. 20.
    T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Isogai, T. Saito, and H. Fukuzumi, Nanoscale, 3, 71 (2011).CrossRefGoogle Scholar
  22. 22.
    T. Saito, M. Hirota, N. Tamura, and A. Isogai, J. Wood Sci., 56, 227 (2010).CrossRefGoogle Scholar
  23. 23.
    H. Bian, G. Li, L. Jiao, Z. Yu, and H. Dai, Bioresources, 11, 10483 (2016).Google Scholar
  24. 24.
    L. Segal, J. J. Creely, A. E. M. Jr, and C. M. Conrad, Text. Res. J., 29, 786 (1959).CrossRefGoogle Scholar
  25. 25.
    T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).CrossRefGoogle Scholar
  26. 26.
    J. Peyre, T. Paakkonen, M. Reza, and E. Kontturi, Green Chem., 17, 808 (2015).CrossRefGoogle Scholar
  27. 27.
    Q. Meng, S. Fu, and L. A. Lucia, Carbohydr. Polym., 144, 187 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Alila, I. Besbes, M. R. Vilar, P. Mutjé, and S. Boufi, Ind. Crops. Prod., 41, 250 (2013).CrossRefGoogle Scholar
  29. 29.
    M. Hirota, N. Tamura, T. Saito, and A. Isogai, Cellulose, 19, 435 (2012).CrossRefGoogle Scholar
  30. 30.
    F. Jiang and Y.–L. Hsieh, ACS Sustain. Chem. Eng., 4, 1041 (2016).CrossRefGoogle Scholar
  31. 31.
    A. M. Adel, Z. H. Abd El–Wahab, A. A. Ibrahim, and M. T. Al–Shemy, Carbohydr. Polym., 83, 676 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Liang Jiao
    • 1
  • Huiyang Bian
    • 1
  • Ying Gao
    • 1
  • Xuliang Lin
    • 2
  • Wenyuan Zhu
    • 1
  • Hongqi Dai
    • 1
    Email author
  1. 1.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
  2. 2.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina

Personalised recommendations