Fibers and Polymers

, Volume 19, Issue 11, pp 2335–2343 | Cite as

Coating of PET Textiles with Anionic Cyclodextrin Polymer for Paraquat Removal from Aqueous Solution

  • Jatupol Junthip


Polyethylene terephthalate (PET) textile was coated with anionic cyclodextrin polymer issued by crosslinking between β-CD (β-Cyclodextrin) and BTCA (1,2,3,4-butanetetracarboxylic acid) for paraquat (PQ) removal from aqueous solution. The polymer covering operated by the thermofixation method (170 ºC and 30 minutes) comprised 23.52 % of weight gain, which was related to 0.76 mmol/g of ionic exchange capacity. The functionalized textile was also characterized by FTIR, SEM and TGA. Adsorption experiment was performed employing different parameters such as the pH of the solution, adsorption time, the initial concentration of paraquat and the adsorption temperature. The suitable pH was equal to 8 and the equilibrium time was 420 minutes. At 30 ºC, the adsorption capacity of PQ was increased (5.0, 20.4, and 25.9 mg/g) when the initial concentration of paraquat was enhanced (10, 50, and 250 mg/l). Adsorption kinetics was appropriated to the pseudo-second-order model and adsorption isotherm was fitted to the Langmuir model. Thermodynamic parameters were studied at different temperatures (30, 40, and 50 ºC), in which the negative ΔH displayed an exothermic adsorption process, the negative ΔG showed a spontaneous adsorption process and the positive ΔS revealed an enhanced disorder. Eventually, the recyclability of the modified textile in methanol reached 85 % after four reusability cycles.


Adsorption Anionic cyclodextrin polymer Functional textile Paraquat Water remediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. P. Nanseu–Njiki, G. K. Dedzo, and E. Ngameni, J. Hazard. Mater., 179, 63 (2010).CrossRefGoogle Scholar
  2. 2.
    M. A. E. Mhammedi, M. Bakasse, and A. Chtaini, J. Hazard. Mater., 145, 1 (2007).CrossRefGoogle Scholar
  3. 3.
    M. C. P. Recena, E. D. Caldas, D. X. Pires, and E. R. J. C. Pontes, Environ. Res., 102, 230 (2006).CrossRefGoogle Scholar
  4. 4.
    O. Núñez, J.–B. Kim, E. Moyano, M. T. Galceran, and S. Terabe, J. Chromatogr. A, 961, 65 (2002).CrossRefGoogle Scholar
  5. 5.
    N. K. Hamadi, S. Swaminathan, and X. D. Chen, J. Hazard. Mater., 112, 133 (2004).CrossRefGoogle Scholar
  6. 6.
    R. J. Smeyne, C. B. Breckenridge, M. Beck, Y. Jiao, M. T. Butt, J. C. Wolf, D. Zadory, D. J. Minnema, N. C. Sturgess, K. Z. Travis, A. R. Cook, L. L. Smith, and P. A. Botham, PLoS One, 11, e0164094 (2016).Google Scholar
  7. 7.
    A. C. R. Lacerda, M. da G. Rodrigues–Machado, P. L. Mendes, R. D. Novaes, G. M. C. Carvalho, W. A. Zin, F. Gripp, and C. C. Coimbra, J. Toxicol. Sci., 34, 671 (2009).CrossRefGoogle Scholar
  8. 8.
    R. Brown, M. Clapp, J. Dyson, D. Scott, I. Wheals, and M. Wilks, Outlooks Pest Manag., 15, 259 (2004).CrossRefGoogle Scholar
  9. 9.
    X. Zhang, M. Thompson, and Y. Xu, Lab. Invest., 96, 496 (2016).CrossRefGoogle Scholar
  10. 10.
    R. J. Dinis–Oliveira, F. Remião, H. Carmo, J. A. Duarte, A. S. Navarro, M. L. Bastos, and F. Carvalho, NeuroToxicology, 27, 1110 (2006).CrossRefGoogle Scholar
  11. 11.
    R. J. Dinis–Oliveira, J. A. Duarte, A. Sánchez–Navarro, F. Remião, M. L. Bastos, and F. Carvalho, Crit. Rev. Toxicol., 38, 13 (2008).CrossRefGoogle Scholar
  12. 12.
    M. J. Cantavenera, I. Catanzaro, V. Loddo, L. Palmisano, and G. Sciandrello, J. Photochem. Photobiol. Chem., 185, 277 (2007).CrossRefGoogle Scholar
  13. 13.
    Z. Zhang, Y. Tang, C. Liu, and L. Wan, J. Nanosci. Nanotechnol., 14, 4170 (2014).CrossRefGoogle Scholar
  14. 14.
    M. G. Sorolla, M. L. Dalida, P. Khemthong, and N. Grisdanurak, J. Environ. Sci., 24, 1125 (2012).CrossRefGoogle Scholar
  15. 15.
    M. S. F. Santos, A. Alves, and L. M. Madeira, Chem. Eng. J., 175, 279 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Oliveira, M. S. F. Santos, F. J. Maldonado–Hódar, G. Schaule, A. Alves, and L. M. Madeira, Chem. Eng. J., 210, 339 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Dhaouadi and N. Adhoum, Appl. Catal. B Environ., 97, 227 (2010).CrossRefGoogle Scholar
  18. 18.
    A. Dhaouadi and N. Adhoum, J. Electroanal. Chem., 637, 33 (2009).CrossRefGoogle Scholar
  19. 19.
    M. F. Zayats, S. M. Leschev, N. V. Petrashkevich, M. A. Zayats, L. Kadenczki, R. Szitás, H. S. Dobrik, and N. Keresztény, Anal. Chim. Acta, 774, 33 (2013).CrossRefGoogle Scholar
  20. 20.
    I. G. Burns, M. H. B. Hayes, and M. Stacey, Pestic. Sci., 4, 629 (1973).CrossRefGoogle Scholar
  21. 21.
    D. S. Cocenza, M. A. de Moraes, M. M. Beppu, and L. F. Fraceto, Water. Air. Soil Pollut., 223, 3093 (2012).CrossRefGoogle Scholar
  22. 22.
    M. P. Leite, L. G. T. dos Reis, N. F. Robaina, W. F. Pacheco, and R. J. Cassella, Chem. Eng. J., 215–216, 691 (2013).Google Scholar
  23. 23.
    A. Calderbank and S. H. Yuen, The Analyst, 90, 99 (1965).CrossRefGoogle Scholar
  24. 24.
    H. Humbert, H. Gallard, H. Suty, and J.–P. Crou, Water Res., 42, 1635 (2008).CrossRefGoogle Scholar
  25. 25.
    M. S. F. Santos, G. Schaule, A. Alves, and L. M. Madeira, Chem. Eng. J., 229, 324 (2013).CrossRefGoogle Scholar
  26. 26.
    R. J. Carr, R. F. Bilton, and T. Atkinson, Appl. Environ. Microbiol., 49, 1290 (1985).Google Scholar
  27. 27.
    W.–T. Tsai and H.–R. Chen, Int. J. Environ. Sci. Technol., 10, 1349 (2013).CrossRefGoogle Scholar
  28. 28.
    T. Nakamura, N. Kawasaki, H. Ogawa, S. Tanada, M. Kogirima, and M. Imaki, Toxicol. Environ. Chem., 70, 275 (1999).CrossRefGoogle Scholar
  29. 29.
    Y. Seki and K. Yurdako, J. Colloid Interface Sci., 287, 1 (2005).CrossRefGoogle Scholar
  30. 30.
    W. T. Tsai, C. W. Lai, and K. J. Hsien, Chemosphere, 55, 829 (2004).CrossRefGoogle Scholar
  31. 31.
    W. Rongchapo, O. Sophiphun, K. Rintramee, S. Prayoon pokarach, and J. Wittayakun, Water Sci. Technol., 68, 863 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Iglesias, R. López, D. Gondar, J. Antelo, S. Fiol, and F. Arce, J. Hazard. Mater., 183, 664 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Brigante, G. Zanini, and M. Avena, J. Hazard. Mater., 184, 241 (2010).CrossRefGoogle Scholar
  34. 34.
    K. M. Ibrahim and H. A. Jbara, J. Hazard. Mater., 163, 82 (2009).CrossRefGoogle Scholar
  35. 35.
    Y. Hao, Z. Wang, J. Gou, and Z. Wang, Can. J. Chem. Eng., 93, 1713 (2015).CrossRefGoogle Scholar
  36. 36.
    D. Ait Sidhoum, M. M. Socías–Viciana, M. D. Ureña–Amate, A. Derdour, E. González–Pradas, and N. Debbagh–Boutarbouch, Appl. Clay Sci., 83–84, 441 (2013).Google Scholar
  37. 37.
    S. F. Barna, E. A. Ott, T. H. Nguyen, M. A. Shannon, and A. Scheeline, J. Environ. Eng., 139, 975 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Brigante and P. C. Schulz, J. Colloid Interface Sci., 363, 355 (2011).CrossRefGoogle Scholar
  39. 39.
    W. Rongchapo, C. Keawkumay, N. Osakoo, K. Deekamwong, N. Chanlek, S. Prayoonpokarach, and J. Wittayakun, Adsorpt. Sci. Technol., 36, 684 (2017).CrossRefGoogle Scholar
  40. 40.
    M. Pateiro–Moure, A. Bermúdez–Couso, D. Fernández–Calviño, M. Arias–Estévez, R. Rial–Otero, and J. Simal–Gándara, J. Chem. Eng., 55, 2668 (2010).Google Scholar
  41. 41.
    T. Fernandes, S. F. Soares, T. Trindade, and A. L. Danielda–Silva, Nanomaterials, 7, 68 (2017).CrossRefGoogle Scholar
  42. 42.
    S. Lan, S. Zhan, J. Ding, J. Ma, and D. Ma, J. Mater. Chem. A, 5, 2514 (2017).CrossRefGoogle Scholar
  43. 43.
    J. Junthip, N. Tabary, F. Chai, L. Leclercq, M. Maton, F. Cazaux, C. Neut, L. Paccou, Y. Guinet, J.–N. Staelens, M. Bria, D. Landy, A. Hédoux, N. Blanchemain, and B. Martel, J. Biomed. Mater. Res. A, 104, 1408 (2016).CrossRefGoogle Scholar
  44. 44.
    M. E. Skold, G. D. Thyne, J. W. Drexler, D. L. Macalady, and J. E. McCray, Environ. Sci. Technol., 42, 8930 (2008).CrossRefGoogle Scholar
  45. 45.
    M. L. Brusseau, X. Wang, and W.–Z. Wang, Environ. Sci. Technol., 31, 1087 (1997).CrossRefGoogle Scholar
  46. 46.
    A. Leudjo Taka, K. Pillay, and X. Yangkou Mbianda, Carbohydr. Polym., 159, 94 (2017).CrossRefGoogle Scholar
  47. 47.
    N. Morin–Crini and G. Crini, Prog. Polym. Sci., 38, 344 (2013).CrossRefGoogle Scholar
  48. 48.
    F. Zhao, E. Repo, D. Yin, Y. Meng, S. Jafari, and M. Sillanpää, Environ. Sci. Technol., 49, 10570 (2015).CrossRefGoogle Scholar
  49. 49.
    Y. Hao, Z. Wang, J. Gou, and Z. Wang, Can. J. Chem. Eng., 93, 1713 (2015).CrossRefGoogle Scholar
  50. 50.
    M. Kitaoka and K. Hayashi, J. Incl. Phenom. Macrocycl. Chem., 44, 429 (2002).CrossRefGoogle Scholar
  51. 51.
    A. Alsbaiee, B. J. Smith, L. Xiao, Y. Ling, D. E. Helbling, and W. R. Dichtel, Nature, 529, 190 (2016).CrossRefGoogle Scholar
  52. 52.
    T. Gong, Y. Zhou, L. Sun, W. Liang, J. Yang, S. Shuang, and C. Dong, RSC Adv., 6, 80955 (2016).CrossRefGoogle Scholar
  53. 53.
    H. Kono, K. Onishi, and T. Nakamura, Carbohydr. Polym., 98, 784 (2013).CrossRefGoogle Scholar
  54. 54.
    A. Celebioglu, H. S. Sen, E. Durgun, and T. Uyar, Chemosphere, 144, 736 (2016).CrossRefGoogle Scholar
  55. 55.
    D. M. Alzate–Sánchez, B. J. Smith, A. Alsbaiee, J. P. Hinestroza, and W. R. Dichtel, Chem. Mater., 28, 8340 (2016).CrossRefGoogle Scholar
  56. 56.
    M. Massaro, C. G. Colletti, G. Lazzara, S. Guernelli, R. Noto, and S. Riela, ACS Sustain. Chem. Eng., 5, 3346 (2017).CrossRefGoogle Scholar
  57. 57.
    D. Ghemati and D. Aliouche, J. Appl. Spectrosc., 81, 257 (2014).CrossRefGoogle Scholar
  58. 58.
    X. Zhang, H. Li, M. Cao, L. Shi, and C. Chen, Sep. Sci. Technol., 50, 947 (2015).CrossRefGoogle Scholar
  59. 59.
    A. Lannoy, R. Bleta, C. Machut–Binkowski, A. Addad, E. Monflier, and A. Ponchel, ACS Sustain. Chem. Eng., 5, 3623 (2017).CrossRefGoogle Scholar
  60. 60.
    R. J. Flaherty, B. Nshime, M. DeLaMarre, S. DeJong, P. Scott, and A. W. Lantz, Chemosphere, 91, 912 (2013).CrossRefGoogle Scholar
  61. 61.
    S. Letort, S. Balieu, W. Erb, G. Gouhier, and F. Estour, Beilstein J. Org. Chem., 12, 204 (2016).CrossRefGoogle Scholar
  62. 62.
    G. Zolfaghari, Chem. Eng. J., 283, 1424 (2016).CrossRefGoogle Scholar
  63. 63.
    H. Liu, X. Cai, Y. Wang, and J. Chen, Water Res., 45, 3499 (2011).CrossRefGoogle Scholar
  64. 64.
    G. Petrovic, G. Stojanovic, O. Jovanovic, A. Djordjevic, I. Palic, and S. Sovilj, Hem. Ind., 67, 231 (2013).CrossRefGoogle Scholar
  65. 65.
    S. Degoutin, C. Saffre, D. Ruffin, M. Bacquet, and B. Martel, Rev. Sci. Eau., 28, 43 (2015).Google Scholar
  66. 66.
    L. Ducoroy, B. Martel, M. Bacquet, and M. Morcellet, J. Incl. Phenom. Macrocycl. Chem., 57, 271 (2007).CrossRefGoogle Scholar
  67. 67.
    L. Ducoroy, M. Bacquet, B. Martel, and M. Morcellet, React. Funct. Polym., 68, 594 (2008).CrossRefGoogle Scholar
  68. 68.
    É. Euvrard, N. Morin–Crini, C. Druart, J. Bugnet, B. Martel, C. Cosentino, V. Moutarlier, and G. Crini, Beilstein J. Org. Chem., 12, 1826 (2016).CrossRefGoogle Scholar
  69. 69.
    R. Zhao, Y. Wang, X. Li, B. Sun, Z. Jiang, and C. Wang, Colloids Surf. B Biointerfaces, 136, 375 (2015).CrossRefGoogle Scholar
  70. 70.
    Q. Hu, D.–W. Gao, H. Pan, L. Hao, and P. Wang, RSC Adv., 4, 40071 (2014).CrossRefGoogle Scholar
  71. 71.
    F. Zhao, E. Repo, D. Yin, Y. Meng, S. Jafari, and M. Sillanpää, Environ. Sci. Technol., 49, 10570 (2015).CrossRefGoogle Scholar
  72. 72.
    W. T. Tsai, K. J. Hsien, Y. M. Chang, and C. C. Lo, Bioresour. Technol., 96, 657 (2005).CrossRefGoogle Scholar
  73. 73.
    M. S. F. Santos, G. Schaule, A. Alves, and L. M. Madeira, Chem. Eng. J., 229, 324 (2013).CrossRefGoogle Scholar
  74. 74.
    N. K. Hamadi, S. Swaminathan, and X. D. Chen, J. Hazard. Mater., 112, 133 (2004).CrossRefGoogle Scholar
  75. 75.
    K. Draoui, R. Denoyel, M. Chgoura, and J. Rouquerol, J. Therm. Anal. Calorim., 58, 597 (1999).CrossRefGoogle Scholar
  76. 76.
    F. Zhao, E. Repo, D. Yin, Y. Meng, S. Jafari, and M. Sillanpää, Environ. Sci. Technol., 49, 10570 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyNakhon Ratchasima Rajabhat UniversityNakhon RatchasimaThailand

Personalised recommendations