Fibers and Polymers

, Volume 19, Issue 12, pp 2604–2611 | Cite as

Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process

  • Natalia Jaramillo-QuicenoEmail author
  • J. Manuel Vélez R.
  • Edith M. Cadena Ch.
  • Adriana Restrepo-Osorio
  • J. Felipe Santa


Pineapple leaf fibers (PALF) were modified by the mercerization process to improve their mechanical properties for applications in composites. The changes in the morphology and mechanical properties of fibers were evaluated after using different conditions (temperature and sodium hydroxide concentration) for the mercerization process. The study was done using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Mercerization treatments caused a reduction in the diameter of fibers, either due removal of surface impurities, disintegration of middle lamella and/or interfibrillar swelling. Mechanical properties of mercerized fibers were modified. The highest tensile strength was observed when mercerization was done at a temperature of 60 °C and alkali concentration of 3 % wt.


Pineapple leaf fiber PALF Mercerization Mechanical properties Morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Zimniewska, M. Wladyka-Przybylak, S. Rana, and R. Fangueiro, Eds., Text. Sci. Clothing Technol., p.171, 2016.Google Scholar
  2. 2.
    G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico, Polym. Compos., 28, 98 (2007).CrossRefGoogle Scholar
  3. 3.
    C. Fragassa in “Advances in Applications of Industrial Biomaterials” (E. Pellicer, D. Nikolic, J. Sort, M. Baró, F. Zivic, N. Grujovic, R. Grujic, and S. Pelemis Eds.), pp.21–47, Cham: Springer International Publishing, 2017.Google Scholar
  4. 4.
    B. Shyamal, N. Debasis, and D. Sanjoy, Indian J. Fibre Text. Res., 36, 172 (2011).Google Scholar
  5. 5.
    M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque, Int. J. Polym. Sci., 2015, doi: (2015).
  6. 6.
    W. Smitthipong, R. Tantatherdtam, and R. Chollakup, J. Thermoplast. Compos. Mater., 28, 717 (2015).CrossRefGoogle Scholar
  7. 7.
    U. Hujuri, S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal, J. Appl. Polym. Sci., 107, 1507 (2008).CrossRefGoogle Scholar
  8. 8.
    B. H. Krauss, Bot. Gaz., 110, 333 (1949).CrossRefGoogle Scholar
  9. 9.
    S. Kalia, B. S. Kaith, and I. Kaur, “Cellulose Fibers Bioand Nano-polymer Composites; Green Chemistry and Technology”, Berlin, Heidelberg, New York, Springer, 2011.CrossRefGoogle Scholar
  10. 10.
    B. M. Cherian, A. L. Leão, S. F. de Souza, L. M. M. Costa, G. M. de Olyveira, M. Kottaisamy, E. R. Nagarajan, and S. Thomas, Carbohydr. Polym., 86, 1790 (2011).CrossRefGoogle Scholar
  11. 11.
    J. George, S. S. Bhagawan, and S. Thomas, Compos. Sci. Technol., 58, 1471 (1998).CrossRefGoogle Scholar
  12. 12.
    W. Y. Hamad, “Cellulosic Materials: Fibers, Networks and Composites”, Springer US, 2013.Google Scholar
  13. 13.
    D. Hazarika, N. Gogoi, S. Jose, R. Das, and G. Basu, J. Clean. Prod., 141, 580 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Jose, R. Salim, and L. Ammayappan, J. Nat. Fibers, 13, 362 (2016).CrossRefGoogle Scholar
  15. 15.
    S. H. S. M. Fadzullah and Z. Mustafa in “Green Approaches to Biocomposite Materials Science and Engineering” (D. Verma, S. Jain, X. Zhang, and P. C. Gope Eds.), pp.125–147, Hershey PA: IGI Global, 2016.Google Scholar
  16. 16.
    N. Kengkhetkit and T. Amornsakchai, Ind. Crops Prod., 40, 55 (2012).CrossRefGoogle Scholar
  17. 17.
    A. K. Mohanty, M. Misra, and L. T. Drzal, “Natural Fibers, Biopolymers, and Biocomposites”, Boca Raton, FL: Taylor & Francis, 2005.CrossRefGoogle Scholar
  18. 18.
    K. L. Pickering, M. G. A. Efendy, and T. M. Le, Compos. Part A Appl. Sci. Manuf., 83, 98 (2016).CrossRefGoogle Scholar
  19. 19.
    O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).CrossRefGoogle Scholar
  20. 20.
    X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).CrossRefGoogle Scholar
  21. 21.
    T. L. Vigo, “Textile Processing and Properties: Preparation, Dyeing, Finishing and Performance”, Elsevier Science, 2013.Google Scholar
  22. 22.
    M. Y. Hashim, M. N. Roslan, A. M. Amin, A. M. A. Zaidi, and S. Ariffin, World Acad. Sci. Eng. Technol., 68, 1638 (2012).Google Scholar
  23. 23.
    S. C. Saha, B. K. Das, P. K. Ray, S. N. Pandey, and K. Goswami, J. Appl. Polym. Sci., 43, 1885 (1991).CrossRefGoogle Scholar
  24. 24.
    R. K. Samal and M. C. Ray, J. Appl. Polym. Sci., 64, 2119 (1997).CrossRefGoogle Scholar
  25. 25.
    N. Lopattananon, Y. Payae, and M. Seadan, J. Appl. Polym. Sci., 110, 433 (2008).CrossRefGoogle Scholar
  26. 26.
    N. Cordeiro, C. Gouveia, and M. J. John, Ind. Crops Prod., 33, 108 (2011).CrossRefGoogle Scholar
  27. 27.
    S. S. Munawar, K. Umemura, F. Tanaka, and S. Kawai, J. Wood Sci., 54, 28 (2008).CrossRefGoogle Scholar
  28. 28.
    G. Rajesh, G. Siripurapu, and A. Lella, Mater. Today Proc., 5, 13146 (2018).CrossRefGoogle Scholar
  29. 29.
    Tappi Method T204 cm-97, TAPPI PRESS, Atlanta, GA, 1988.Google Scholar
  30. 30.
    Tappi MethodT207 om-88, TAPPI PRESS, Atlanta, GA, 1988.Google Scholar
  31. 31.
    UNE 57050:2003, Asociacion Espanola de Normalizacion, Madrid, 2003.Google Scholar
  32. 32.
    ASTM-D1104, ASTM International, West Conshohocken PA, 1956.Google Scholar
  33. 33.
    Tappi Method T203 cm-09, TAPPI PRESS, Atlanta, GA, 1999.Google Scholar
  34. 34.
    Tappi Method T222 om-02, TAPPI PRESS, Atlanta, GA, 1988.Google Scholar
  35. 35.
    S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).CrossRefGoogle Scholar
  36. 36.
    L. J. Gibson, J. R. Soc. Interface, 9, 2749 (2012).CrossRefGoogle Scholar
  37. 37.
    K. J. Niklas, “Plant Biomechanics: An Engineering Approach to Plant Form and Function”, University of Chicago Press, 1992.Google Scholar
  38. 38.
    S. S. Munawar, K. Umemura, and S. Kawai, J. Wood Sci., 53, 108 (2007).CrossRefGoogle Scholar
  39. 39.
    V. Placet, F. Trivaudey, O. Cisse, V. Gucheret-Retel, and M. L. Boubakar, Compos. Part A Appl. Sci. Manuf., 43, 275 (2012).CrossRefGoogle Scholar
  40. 40.
    A. Célino, S. Fréour, F. Jacquemin, and P. Casari, Front. Chem., 1 (2014).Google Scholar
  41. 41.
    D. Ray and B. K. Sarkar, J. Appl. Polym. Sci., 80, 1013 (2001).CrossRefGoogle Scholar
  42. 42.
    Y. Yue, G. Han, and Q. Wu, BioResources, 8, 6460 (2013).CrossRefGoogle Scholar
  43. 43.
    Y. Wang, Ph. D. Dissertation, Georgia Tech, 2008.Google Scholar
  44. 44.
    J. Siregar, S. Sapuan, M. Rahman, and H. Zaman, Serdang, Malaysia, 2008,19.Google Scholar
  45. 45.
    H. P. S. A. Khalil, M. S. Alwani, and A. K. M. Omar, BioResources, 1, 220 (2006).Google Scholar
  46. 46.
    A. Bismarck, S. Mishra, and T. Lampke, “Natural Fibers, Biopolymers, and Biocomposites”, CRC Press, 2005.Google Scholar
  47. 47.
    S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydr. Res., 340, 417 (2005).CrossRefGoogle Scholar
  48. 48.
    A. R. Osorio, R. Zuluaga, C. Castro, N. Correa, J. Vélez, and P. Gañán, Sci. Tech., 4, 689 (2007).Google Scholar
  49. 49.
    R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, Carbohydr. Polym., 76, 51 (2009).CrossRefGoogle Scholar
  50. 50.
    D. N. S. Hon and N. Shiraishi, “Wood and Cellulosic Chemistry”, 2nd ed., Revised, and Expanded. Taylor & Francis, 2000.Google Scholar
  51. 51.
    M. Das and D. Chakraborty, J. Appl. Polym. Sci., 102, 5050 (2006).CrossRefGoogle Scholar
  52. 52.
    M. H. Lee, H. S. Park, K. J. Yoon, and P. J. Hauser, Text. Res. J., 74, 146 (2004).CrossRefGoogle Scholar
  53. 53.
    A. R. Sena Neto, M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini, Ind. Crops Prod., 43, 529 (2013).CrossRefGoogle Scholar
  54. 54.
    N. Reddy and Y. Yang, Trends Biotechnol., 23, 22 (2005).CrossRefGoogle Scholar
  55. 55.
    A. R. Sena Neto, M. A. M. Araujo, R. M. P. Barboza, A. S. Fonseca, G. H. D. Tonoli, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini, Ind. Crops Prod., 64, 68 (2015).CrossRefGoogle Scholar
  56. 56.
    M. Cai, H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li, Ind. Crops Prod., 65, 27 (2015).CrossRefGoogle Scholar
  57. 57.
    A. Duval, A. Bourmaud, L. Augier, and C. Baley, Mater. Lett., 65, 797 (2011).CrossRefGoogle Scholar
  58. 58.
    C. Baley, Compos. Part A Appl. Sci. Manuf., 33, 939 (2002).CrossRefGoogle Scholar
  59. 59.
    A. R. Mohamed, S. M. Sapuan, M. Shahjahan, and A. Khalina, J. Food, Agric. Environ., 7, 235 (2009).Google Scholar
  60. 60.
    A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. Basu Majumder, and B. Adhikari, Bioresour. Technol., 107, 222 (2012).CrossRefGoogle Scholar
  61. 61.
    A. Bledzki, Prog. Polym. Sci., 24, 221 (1999).CrossRefGoogle Scholar
  62. 62.
    K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Compos. Part A Appl. Sci. Manuf., 37, 2213 (2006).CrossRefGoogle Scholar
  63. 63.
    A. Alawar, A. M. Hamed, and K. Al-Kaabi, Compos. Part B Eng., 40, 601 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Natalia Jaramillo-Quiceno
    • 1
    • 2
    Email author
  • J. Manuel Vélez R.
    • 2
  • Edith M. Cadena Ch.
    • 3
  • Adriana Restrepo-Osorio
    • 1
  • J. Felipe Santa
    • 2
    • 4
  1. 1.Escuela de IngenieríasUniversidad Pontificia BolivarianaMedellínColombia
  2. 2.Facultad de MinasUniversidad Nacional de ColombiaMedellínColombia
  3. 3.Facultad de Ciencias AgrariasUniversidad Nacional de ColombiaMedellínColombia
  4. 4.Grupo de Materiales Avanzados y Energía -MATyER.Instituto Tecnológico MetropolitanoMedellínColombia

Personalised recommendations