Advertisement

Fibers and Polymers

, Volume 19, Issue 11, pp 2290–2297 | Cite as

Treatment of Cotton Fiber with Newly Synthesized UV Absorbers: Optimization and Protection Efficiency

  • Anum SaharEmail author
  • Shaukat Ali
Article
  • 25 Downloads

Abstract

Two new hetrofunctional triazine based UV absorbers (1a, 2a) were theoretically and experimentally synthesized at our previous work. In the current investigation, these absorbers were applied to woven cotton fabric via the exhaust method of dyeing, that increase the ultraviolet protection factor of fabric by keeping the quantity of finishing chemicals low to combat with the environmental problem. Therefore, a statistical tool central composite rotatable design (CCRD) of response surface methodology (RSM) was selected for process modeling. The CCRD was applied to study the effect of three process variables (salt, alkali and temperature) on the two responses (exhaustion and fixation percentage) and for the evaluation of the interactive effects of the three process variables. The results show that the applied quadratic model was highly significant and fit to the experimental data for both the UV absorbers (1a and 2a). The values of optimized parameters for CCRD, in cotton finishing with newly synthesized UV absorbers (1a and 2a) were respectively as follows; temperature of 61.91 oC, dose of salt 34.28 g/l and dose of alkali 19.82 g/l. Under these conditions, 77.56 (±3) and 76.08 (±3) exhaustion and 81.12 (±3) and 79.23 (±3) fixation percentage obtained for UV absorbers 1a and 2a respectively. The ultraviolet protection factor (UPF) of treated cotton fabric under optimized conditions appeared in very good range. The results reveal that the applied statistical design economically and effectively predicts the optimized conditions of finishing of cotton by keeping the number of experiments low than the one factor at a time method, that ultimately reduce water pollution and wastage of resources.

Keywords

UV absorbers Optimization CCRD Exhaustion Cotton fabric Protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Li, G. Fan, K. Wang, F. Sun, Y. Yuan, G. Song, Q. Li, Z. Ma, C. Lu, and C. Zou, Nature Genetics, 46, 567 (2014).CrossRefGoogle Scholar
  2. 2.
    K. O. Jang and K. Yeh, Text. Res. J., 63, 557 (1993).CrossRefGoogle Scholar
  3. 3.
    W. D. Schindler and P. J. Hauser, “Chemical Finishing of Textiles”, Elsevier, 2004.CrossRefGoogle Scholar
  4. 4.
    J. Chakraborty, J. Text. Apparel Technol. Manage., 9, 61 (2014).Google Scholar
  5. 5.
    A. R. Young, Prog. Biophys. Mol. Biol., 92, 80 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Haque, J. Crowther, M. Lane, and D. Moore, Int. J. Pharm., 510, 250 (2016).CrossRefGoogle Scholar
  7. 7.
    R. Hilfiker, W. Kaufmann, G. Reinert, and E. Schmdt, Text. Res. J., 66, 61 (1996).CrossRefGoogle Scholar
  8. 8.
    K. Hoffmann, K. Kaspar, T. Gambichler, and P. Altmeyer, J. Am. Acad. Dermatol., 43, 1009 (2000).CrossRefGoogle Scholar
  9. 9.
    R. P. Gallagher and T. K. Lee, Prog. Biophys. Mol. Biol., 92, 119 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Tsatsaroni and I. Eleftheriadis, Dyes Pigm., 61, 141 (2004).CrossRefGoogle Scholar
  11. 11.
    N. Abidi, L. Cabrales, and E. Hequet, ACS Appl. Mater. Interfaces, 1, 2141 (2009).CrossRefGoogle Scholar
  12. 12.
    Q.–Z. Yu and A.–A. Shen, J. Fiber Bioeng. Informatics, 1, 65 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Mamnicka and W. Czajkowski, Cellulose, 19, 1781 (2012).CrossRefGoogle Scholar
  14. 14.
    W. Czajkowski, J. Mamnicka, W. Lota, and J. Lewartowska, Fiber. Polym., 13, 948 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Akrman and J. Přikryl, J. Appl. Polym. Sci., 108, 334 (2008).CrossRefGoogle Scholar
  16. 16.
    C. S. Rodrigues, L. M. Madeira, and R. A. Boaventura, J. Environ. Chem. Eng., 2, 1027 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Irfan, M. Nadeem, and Q. Syed, J. Radiation Res. Appl. Sci., 7, 317 (2014).CrossRefGoogle Scholar
  18. 18.
    K. Ravikumar, S. Krishnan, S. Ramalingam, and K. Balu, Dyes Pigm., 72, 66 (2007).CrossRefGoogle Scholar
  19. 19.
    M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Talanta, 76, 965 (2008).CrossRefGoogle Scholar
  20. 20.
    S. S. Chong, A. A. Aziz, S. W. Harun, H. Arof, and S. Shamshirband, Measurement, 74, 78 (2015).CrossRefGoogle Scholar
  21. 21.
    A. Fakhri, Process Safety and Environmental Protection, 93, 1 (2015).CrossRefGoogle Scholar
  22. 22.
    S. S. Sahoo, C. B. Rao, and A. K. Mehta, J. HarmaSciTech, 5, 2321 (2015).Google Scholar
  23. 23.
    Y. Yin, J. Jia, T. Wang, and C. Wang, J. Cleaner Prod., 149, 673 (2017).CrossRefGoogle Scholar
  24. 24.
    W. Santos, A. De Moura, E. Silva, L. Cardozo–Filho, E. Muniz, and A. Rubira, Dyes Pigm., 75, 378 (2007).CrossRefGoogle Scholar
  25. 25.
    N. Nasirizadeh, H. Dehghanizadeh, M. E. Yazdanshenas, M. R. Moghadam, and A. Karimi, Ind. Crops Prod., 40, 361 (2012).CrossRefGoogle Scholar
  26. 26.
    K. Ojha, R. Sharma, and S. Pathak, J. Mech. Des., 2, 74 (2014).Google Scholar
  27. 27.
    W. Czajkowski, J. Paluszkiewicz, R. Stolarski, M. Kaźmierska, and E. Grzesiak, Dyes Pigm., 71, 224 (2006).CrossRefGoogle Scholar
  28. 28.
    D. Lewis and Y. Ho, Dyes Pigm., 28, 171 (1995).CrossRefGoogle Scholar
  29. 29.
    M. Kaźmierska and R. Stolarski, Fibres Text. East. Eur., 13, 50 (2005).Google Scholar
  30. 30.
    H. R. Myers, C. D. Montgomery, and M. C. Anderson–Cook, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition”, John Wiley & Sons, 2016.Google Scholar
  31. 31.
    B. Ahmad, I. Bhatti, Q. Saeed, and M. Abbas, J. Basic Appl. Sci., 12, 129 (2012).Google Scholar
  32. 32.
    A. Lidyard, A. Woodcock, and P. Noone, Color. Technol., 108, 501 (1992).Google Scholar
  33. 33.
    M. M. Kamel, M. Kamel, and M. Kamel, Color. Technol., 108, 450 (1992).Google Scholar
  34. 34.
    S. Chinta and S. VijayKumar, Int. J. Eng. Manag. Sci., 4, 308 (2013).Google Scholar
  35. 35.
    H. Zheng, J. Zhang, and L. Zheng, Text. Res. J., 87, 1818 (2017).CrossRefGoogle Scholar
  36. 36.
    V. Shenai, “Technology of Textile Processing Volume II Chemistry of Dyes”, Sevak Publications, 1987.Google Scholar
  37. 37.
    D. Chattopadhyay and R. Chaudhary, Manmade Textiles in India, 40, 495 (1997).Google Scholar
  38. 38.
    K. Hunger, “Industrial Dyes: Chemistry, Properties, Applications”, John Wiley & Sons, 2007.Google Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AgricultureFaisalabadPakistan

Personalised recommendations