Advertisement

Fibers and Polymers

, Volume 19, Issue 11, pp 2229–2236 | Cite as

Antibacterial Bilayered Skin Patches Made of HPMA and Quaternary Poly(4-vinyl pyridine)

  • İ. Alper İşoğlu
  • Cemre Demirkan
  • Mine Gül Şeker
  • Kadriye Tuzlakoğlu
  • Sevil Dinçer İşoğluEmail author
Article
  • 46 Downloads

Abstract

This study aimed to produce poly(4-vinyl pyridine) and hydroxypropyl methacrylamide (HPMA)-based bilayer wound dressings materials enhancing healing mechanism for the wounds which have self-healing problem and high infection risk. These materials were designed to protect wound from secondary traumas caused microorganism invasion and do not have toxic substance release problem. Synthesis of quaternary poly(4-vinyl pyridine) (poly(Q4-VP)) which is the antibacterial layer of wound dressing material was carried out in two stages. At first stage, poly(4-vinyl pyridine) polymer was synthesized from 4-vinyl pyridine monomer by free radical polymerization. Then, poly(Q4-VP) was synthesized from poly(4-VP) by alkylation reaction with 6-bromocaproic acid. Resulted polymer was structurally characterized by FT-IR. The macroporous spongy structure, as the lower layer of wound dressing material, was prepared by cryogelation of HPMA. Then, the antibacterial polymer was electrospun onto the cryogel structure and bilayered material was obtained. Cryogel structure, fiber morphology and layer integration was examined by SEM. In order to enhance wound healing process, ascorbic acid (vitamin C) was loaded to cryogel layer and release was followed by spectrophotometrically. The antimicrobial properties of the materials were examined against Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. According to the results, bilayered, antibacterial and antifungal against Staphylococcus aureus and Candida albicans, temporary wound dressings which can stimulate wound healing and have high swelling capacity were obtained successfully.

Keywords

Antibacterial wound dressings Quaternary poly(4-vinyl pyridine) Electrospinning Cryogel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Dhivya, V. V. Padma, and E. Santhini, ioMedicine, 5, 4 (2015).Google Scholar
  2. 2.
    S. P. Zhong, Y. Z. Zhang, and C. T. Lim, Wiley Interdisciplinary Rev–Nanomed Nanobiotechnol., 2, 510 (2010).CrossRefGoogle Scholar
  3. 3.
    V. I. Lozinsky, I. Y. Galayev, F. M. Pileva, I. N. Savina, H. Junqvid, and B. Mattiasson, Trends in Biotechnol., 21, 10 (2003).CrossRefGoogle Scholar
  4. 4.
    I. Chopra, J. Antimicrob. Chemother., 59, 587 (2007).CrossRefGoogle Scholar
  5. 5.
    Y. Xue, H. Xiao, and Y. Zhang, Int. J. Mol. Sci., 16, 3626 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Chowdhury, S. K. Saha, and S. P. Bayen, J. Macromol. Sci., Part A, 50, 976 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Arslan, D. Saraydın, Y. Öztop, and N. Şahiner, Polym.–Plast. Technol. Eng., 56, 12 (2017).Google Scholar
  8. 8.
    F. Groeber, M. Holeiter, M. Hampel, S. Hinderer Schenke, and K. Layland, Adv. Drug Deliv. Rev., 63, 352 (2011).CrossRefGoogle Scholar
  9. 9.
    H. Schoof, J. Apel, I. Heschel, and G. Rau, J. Biomed. Mater. Res., 58, 352 (2001).CrossRefGoogle Scholar
  10. 10.
    B. Subia, J. Kundu, and S. C. Kundu in “Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications” (D. Eberli Ed.), Vol. 12, pp.141–157, InTech Open, 2010.Google Scholar
  11. 11.
    V. J. Reddy, S. Radhakrishnan, R. Ravichandra, S. Mukherje, R. Balamurugan, S. Sundarrajan, and S. Ramakrishna, Wound Repair and Regeneration, 21, 1 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Uzunalan, M. T. Ozturk, S. Dincer, and K. Tuzlakoglu, J. Compos. Biodegr. Polym., 1, 8 (2013).CrossRefGoogle Scholar
  13. 13.
    E. Pişkin, N. Bölgen, S. Eğri, and İ. A. İşoğlu, Nanomedicine, 2, 441 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Kopeček and P. Kopečková, Adv. Drug Delivery Rev., 62, 122 (2010).CrossRefGoogle Scholar
  15. 15.
    F. X. Hu, K. G. Neoh, L. Cen, and E. T. Kang, Biotechnol. Bioeng., 89, 474 (2004).CrossRefGoogle Scholar
  16. 16.
    E. S. Park, H. S. Kim, M. N. Kim, and J. S. Yoon, Eur. Polym. J., 40, 2819 (2004).CrossRefGoogle Scholar
  17. 17.
    C. Valgas, S. M. De Souza, E. F. Smania, and A. Smania, Braz. J. Microbiol., 38, 369 (2007).CrossRefGoogle Scholar
  18. 18.
    A. M. Pana, G. Bandur, L. M. Rusnac, and R. Halmagean, Chem. Bull., 55, 1 (2010).Google Scholar
  19. 19.
    P. Mondal, S. K. Saha, and P. Chowdhury, J. Appl. Polym. Sci., 127, 5045 (2013).CrossRefGoogle Scholar
  20. 20.
    V. Lozinsky, F. Plieva, I. Galaev, and B. Mattiasson, Bioseparation, 10, 163 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Uygun, R. H. Şenay, N. Avcıbaşı, and S. Akgöl, Appl. Biochem. Biotechnol., 172, 1574 (2014).CrossRefGoogle Scholar
  22. 22.
    H. Alkan, N. Bereli, Z. Baysal, and A. Denizli, Biochem. Eng. J., 45, 201 (2009).CrossRefGoogle Scholar
  23. 23.
    S. G. Kumbar, P. S. Nukavarapu, R. James, L. S. Nair, and C. T. Laurencin, Biomaterials, 29, 4100 (2008).CrossRefGoogle Scholar
  24. 24.
    M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. Pt. B Appl. Biomater., 67B, 675 (2003).Google Scholar
  25. 25.
    J. P. Chen, G. Y. Chang, and J. K. Chen, Colloids and Surfaces, 313, 183 (2008).CrossRefGoogle Scholar
  26. 26.
    P. Rujitanaroj, N. Pimpha, and P. Supaphol, Polymer, 49, 4723 (2008).CrossRefGoogle Scholar
  27. 27.
    H. Dong, E. Fey, and A. Gandelman, and W. E. Jones Jr., Chem. Mater., 18, 2008 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Shemesh and M. Zilberman, Acta Biomaterialia, 10, 1380 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Mu, F. Liu, Q. Cheng, H. Li, B. Wu, G. Zhan, and W. Lin, Macromol. Mater. Eng., 295, 100 (2010).Google Scholar
  30. 30.
    N. Bereli, G. Ertürk, M. A. Tümer, R. Say, and A. Denizli, Biomed. Chromatogr., 27, 599 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Guo and L. A. DiPietro, J. Dent. Res., 89, 219 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Yang, W. Liu, C. Liu, W. Liu, G. Tong, H. Zheng, and W. Zhou, J. Dispersion Sci. Technol., 33, 1608 (2012).CrossRefGoogle Scholar
  33. 33.
    N. Kawabata and M. Nishiguchi, Appl. Envirom. Microbiol., 54, 2532 (1988).Google Scholar
  34. 34.
    S. Krishnan, R. J. Ward, A. Hexemer, K. E. Sohn, K. L. Lee, E. R. Angert, D. A. Fischer, E. J. Kramer, and C. K. Ober, Langmuir, 22, 11255 (2006).CrossRefGoogle Scholar
  35. 35.
    J. C. Tiller, K. Lewis, and A. M. Klibanov, Proc. Natl. Acad. Sci., 98, 5981 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • İ. Alper İşoğlu
    • 1
  • Cemre Demirkan
    • 2
  • Mine Gül Şeker
    • 3
  • Kadriye Tuzlakoğlu
    • 4
  • Sevil Dinçer İşoğlu
    • 1
    Email author
  1. 1.Bioengineering DepartmentAbdullah Gül UniversityKayseriTurkey
  2. 2.Bioengineering DepartmentYıldız Technical UniversityİstanbulTurkey
  3. 3.Molecular Biology and GeneticsGebze Technical UniversityİzmitTurkey
  4. 4.Polymer EngineeringYalova UniversityYalovaTurkey

Personalised recommendations