Fibers and Polymers

, Volume 19, Issue 10, pp 2178–2187 | Cite as

Preparation and Electrochemical Performances of Graphene Oxide/PEDOT and Reduced Graphene Oxide/PEDOT Nanofibers and Nanocomposites

  • Deniz Gülercan
  • İlknur Gergin
  • A. Sezai SaracEmail author


In this work, conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized on the surface of graphene oxide (GO) and reduced graphene oxide (rGO) sheets via in-situ microemulsion polymerization process to achieve graphene oxide-poly(3,4-ethylenedioxythiophene) (GO-PEDOT) and reduced graphene oxide-poly(3,4-ethylenedioxythiophene) (rGO-PEDOT) nanocomposites. Nanofibers of PEDOT, GO-PEDOT, rGO-PEDOT and GO on poly(acrylonitrile-costyrene) (P(AN-co-St)) matrice have also been fabricated due to their high potential in using as electrodes for flexible supercapacitors. As demonstrated by scanning electron microscope, atomic force microscope and spectroscopic techniques, PEDOT has been succesfully synthesized on the surface of the GO and rGO sheets. The SEM results demonstrate that nanofibers have beadless structure with a diameter range less than 300 nm. The electrochemical capacitive properties of the nanofibers were investigated by using electrochemical impedance spectroscopy. The electrochemical measurements reveal that GO enhances capacitive behavior of PEDOT nanofibers more than rGO, but both GO and rGO improve the electrochemical performance of the nanofibers.


Electrochemical impedance spectroscopy Graphene oxide Nanofiber Poly(3,4-ethylenedioxythiophene) Reduced graphene oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Basavaraja, W. J. Kim, Y. D. Kim, and D. S. Huh, Mater. Lett., 65, 3120 (2011).CrossRefGoogle Scholar
  2. 2.
    X. Wang, Y. G. Kim, C. Drew, C. Ku, J. Kumar, and L. A. Samuelsen, Nano Lett., 4, 331 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Y. Chao, H. G. Lim, S. R. Yun, J. Kim, and K. S. Kang, J. Phys. Chem. C, 112, 7001 (2008).CrossRefGoogle Scholar
  4. 4.
    H. Tai, Y. Jiang, G. Xie, and J. Yu, J. Matter. Sci., 26, 605 (2010).Google Scholar
  5. 5.
    X. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Nanoscale, 2, 2164 (2010).CrossRefGoogle Scholar
  6. 6.
    Z. Liu, D. He, Y. Wang, H. Wu, and J. Wang, Synt. Met., 160, 1036 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, and L. Fan, Energy, 54, 315 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Bora and S. K. Dolui, Polymer, 53, 923 (2012).CrossRefGoogle Scholar
  9. 9.
    T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010).CrossRefGoogle Scholar
  10. 10.
    Z. Ming, Y. Zhai, and S. Dong, Anal. Chem., 81, 5603 (2009).CrossRefGoogle Scholar
  11. 11.
    W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braetet, Angew. Chem. Eng., 49, 2114 (2010).CrossRefGoogle Scholar
  12. 12.
    D.W. Wang, F. Li, J. P. Zhao, W. C. Ren, Z. J. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, and H. M. Cheng, ACS Nano, 3, 1745 (2009).CrossRefGoogle Scholar
  13. 13.
    T. Wei, G. L. Luo, Z. J. Fan, C. Zheng, J. Yan, C. Z. Yao, W. F. Li, and C. Zhang, Carbon, 47, 2290 (2009).CrossRefGoogle Scholar
  14. 14.
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000).CrossRefGoogle Scholar
  15. 15.
    S. Kirchmeyer and K. Reuter, J. Mater. Chem., 15, 2077 (2005).CrossRefGoogle Scholar
  16. 16.
    C. H. Lei, P. Wilson, and C. Lekakou, J. Power Sources, 196, 7823 (2011).CrossRefGoogle Scholar
  17. 17.
    Z. F. Li, H. Y. Zhang, Q. Liu, Y. D. Liu, L. Stanciu, and J. Xie, Carbon, 71, 257 (2014).CrossRefGoogle Scholar
  18. 18.
    A. R. Liu, C. Li, H. Bai, and G. Q. Shi, J. Phys. Chem. C, 114, 22783 (2010).CrossRefGoogle Scholar
  19. 19.
    J. Li, H. Q. Xie, and Y. Li, J. Power Sources, 241, 388 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, and C. K. Das, Polymer, 54, 1033 (2013).CrossRefGoogle Scholar
  21. 21.
    S. B. Lee, S. M. Lee, N. I. Park, S. Lee, and D. W. Chung, Synt. Met., 201, 61 (2015).CrossRefGoogle Scholar
  22. 22.
    L. Chen, W. Liu, X. Su, S. Xiao, H. Xie, C. Uher, and X. Tang, Synt. Met., 229, 65 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Zhang and X. S. Zhao, J. Phys. Chem. C, 116, 5420 (2012).CrossRefGoogle Scholar
  24. 24.
    P. Liu, Y. Huang, and X. Sun, ACS Appl. Mater. Interfaces, 5, 12355 (2013).CrossRefGoogle Scholar
  25. 25.
    R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang, and Q. Peng, ACS Sustainable Chem. Eng., 6, 1279 (2018).CrossRefGoogle Scholar
  26. 26.
    X. Luo, K. Ma, T. Jiao, R. Xing, L. Zhang, J. Zhou, and B. Li, Nanoscale Res. Lett., 12, 99 (2017).CrossRefGoogle Scholar
  27. 27.
    Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang, and Q. Peng, Nanomaterials, 8, 35 (2018).CrossRefGoogle Scholar
  28. 28.
    J. Zhou, Y. Liu, T. Jiao, R. Xing, Z. Yang, J. Fan, J. Liu, B. Li, and Q. Peng, Colloid Surf. A, 7, 538, (2018).Google Scholar
  29. 29.
    K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, and Q. Peng, Sci. China Mater., 61, 728 (2018).CrossRefGoogle Scholar
  30. 30.
    S. K. Choi, F. Liu, J. S. Choi, and T. S. Seo, Langmuir, 26, 12902 (2010).CrossRefGoogle Scholar
  31. 31.
    D. Gülercan and A. S. Sarac, Int. J. Electrochem. Sci., 13, 433 (2018).CrossRefGoogle Scholar
  32. 32.
    Y. F. Xu, Y. Wang, J. J. Liang, Y. Huang, Y. F. Ma, X. J. Wan, and Y. S. Chen, Nano Res., 2, 343 (2009).CrossRefGoogle Scholar
  33. 33.
    F. Alvi, M. K. Ram, P. A. Basnayakab, E. Stefanakosa, Y. Goswamid, and A. Kumarb, Electrochim. Acta, 56, 9406 (2011).CrossRefGoogle Scholar
  34. 34.
    Y. Lin, F. Hsu, and T. Wu, Synt. Met., 184, 29 (2013).CrossRefGoogle Scholar
  35. 35.
    Y. Yang, S. Li, W. Yang, W. Yuan, J. Xu, and Y. Jiang, ACS Appl. Mater. Interfaces, 6, 13807 (2014).CrossRefGoogle Scholar
  36. 36.
    H. L. K. Trang, T. T. Tung, T. Y. Kim, W. S. Yang, H. Kim, and K. S. Suha, Polym. Int., 61, 93 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Yang, X. Yang, W. Yang, S. Li, J. Xu, and Y. Jiang, RSC Adv., 4, 42546 (2014).CrossRefGoogle Scholar
  38. 38.
    F. Jiang, Z. Yao, R. Yue, Y. Du, J. Xu, P. Yang, and C. Wang, Int. J. Hydrog. Energy, 37, 14085 (2012).CrossRefGoogle Scholar
  39. 39.
    K. Zhang, L. Lu, Y. Wen, J. Xu, X. Duan, L. Zhang, D. Hu, and T. Nie, Anal. Chim. Acta, 787, 50 (2013).CrossRefGoogle Scholar
  40. 40.
    K. Zhang, L. Zhang, X. S. Zhao, and J. Wu, J. Chem. Mater, 22, 1392 (2010).CrossRefGoogle Scholar
  41. 41.
    I. Gergin, A. T. Gökçeören, and A. S. Sarac, Fiber. Polym., 16, 1468 (2015).CrossRefGoogle Scholar
  42. 42.
    Y. Chen, J. Xu, Y. Mao, Y. Yang, W. Yang, and S. Li, Mater. Sci. Eng. B, 178, 1152 (2013).CrossRefGoogle Scholar
  43. 43.
    Z. Li, H. Zhang, Q. Liu, L. Sun, A. Stanciu, and J. Xie, ACS Appl. Mater. Interface, 5, 2685 (2013).CrossRefGoogle Scholar
  44. 44.
    E. Ismar, T. Karazehir, M. Ates, and A. S. Sarac, J. Appl. Polym. Sci., 135, 45723 (2018).CrossRefGoogle Scholar
  45. 45.
    I. Gergin, E. Ismar, and A. S. Sarac, Beilstein J. Nanotechnol., 8, 1616 (2017).CrossRefGoogle Scholar
  46. 46.
    D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid Interface Sci., 430, 108 (2014).CrossRefGoogle Scholar
  47. 47.
    H. Zhou, G. Han, D. Fu, Y. Chang, Y. Xiao, and H. J. Zhai, J. Power Sources, 272, 203 (2014).CrossRefGoogle Scholar
  48. 48.
    P. Damlin, M. Suominen, M. Heinone, and C. Kvarnström, Carbon, 93, 533 (2015).CrossRefGoogle Scholar
  49. 49.
    A. S. Sarac, “Nanofibers of Conjugated Polymers”, Pan Stanford, Publishing Pte. Ltd., Singapore, 2016.CrossRefGoogle Scholar
  50. 50.
    Y. Han, B. Ding, H. Tong, and X. Zhang, J. Appl. Polym. Sci., 121, 892 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Deniz Gülercan
    • 1
  • İlknur Gergin
    • 1
  • A. Sezai Sarac
    • 1
    • 2
    Email author
  1. 1.Polymer Science and TechnologyIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Nanoscience and NanoengineeringIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations