Fibers and Polymers

, Volume 19, Issue 12, pp 2449–2457 | Cite as

Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes

  • Xiaorui Ren
  • Huanhuan Li
  • Ke Liu
  • Hongyi Lu
  • Jingshuai YangEmail author
  • Ronghuan He


Poly(vinylpyrrolidone) (PVP), as the low-cost and commercial material, exhibits superior phosphoric acid doping capability due to the presence of heterocycle and carbonyl groups in the repeat unit. However, it can’t be used as the high temperature polymer electrolyte membrane (HT-PEM) alone because of its significant hydrophilicity and poor mechanical stability. In the present work, polyethersulfone (PES), polysulfone (PSU), polyetherketone-cardo (PEK-c), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene) (PHFP), five kinds of engineering thermoplastics with excellent mechanical properties and chemical inertness, are chosen to prepare a series of PVP blend membranes by the polymer blending method in order to enhance the dimensional and mechanical stabilities of PVP based membranes. The influence of structures of enhanced polymers on properties of HT-PEMs was investigated systematically. PVP blend membranes with aromatic polymers (i.e. PES, PSU and PEK-c) exhibited decreased volume swellings, increased acid doping contents, superior conductivities and improved mechanical strengths, which determined that they are more suitable for electrolytes of fuel cell applications comparing with PVP/PVDF and PVP/PHFP membranes blended with aliphatic polymers.


Blend Poly(vinylpyrrolidone) Electrolyte membrane High temperature Fuel cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_8361_MOESM1_ESM.pdf (309 kb)
Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes


  1. 1.
    J. A. Kerres, Fuel Cells, 5, 230 (2005).CrossRefGoogle Scholar
  2. 2.
    Q. Li, J. O. Jensen, and R. F. Savinell, Prog. Polym. Sci., 34, 449 (2009).CrossRefGoogle Scholar
  3. 3.
    A. Chandan, M. Hattenberger, and A. El-Kharouf, J. Power Sources, 23, 264 (2013).CrossRefGoogle Scholar
  4. 4.
    V. D. Noto, E. Negro, J. Y. Sanchez, and C. Iojoiu, J. Amer. Chem. Soc., 132, 2183 (2010).CrossRefGoogle Scholar
  5. 5.
    J. P. Melchior, G. Majerb, and K. D. Kreuer, Phys. Chem. Chem. Phys., 19, 601 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Yang, Y. Xu, L. Zhou, Q. Che, and R. He, J. Membr. Sci., 446, 318 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Angioni, D. C. Villa, A. S. Cattaneo, P. Mustarelli, and E. Quartarone, J. Power Sources, 294, 347 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Ni, M. Hu, D. Liu, X. Xiang, and L. Wang, J. Mater. Chem. C, 4, 4814 (2016).CrossRefGoogle Scholar
  9. 9.
    K. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. Y. Lim, K. H. Kim, T. Ko, and J. C. Lee, J. Membr. Sci., 536, 76 (2017).CrossRefGoogle Scholar
  10. 10.
    D. Joseph, N. Krishnan, D. Henkensmeier, J. H. Jang, S. H. Choi, H. J. Kim, J. Hana, and S. W. Nam, J. Mater. Chem. A., 5, 409 (2017).CrossRefGoogle Scholar
  11. 11.
    F. Schönberger, G. Qian, and B. C. Benicewicz, J. Polym. Sci., Part A, Polym. Chem., 55, 1831 (2017).CrossRefGoogle Scholar
  12. 12.
    J. Yang, L. Gao, J. Wang, Y. Xu, C. Liu, and R. He, Macromol. Chem. Phys., 218, 1700009 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. C. Cao, C. Xu, and L. Zou, J. Power Sources, 294, 691 (2015).CrossRefGoogle Scholar
  14. 14.
    W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. D. Lin, J. Wang, G. Zhang, Q. F. Li, and H. Na, Energy Envir. Sci., 5, 7617 (2012).CrossRefGoogle Scholar
  15. 15.
    N. Zhang, B. Wang, C. Zhao, S. Wang, Y. Zhang, F. Bu, Y. Cui, X. Li, and H. Na, J. Mater. Chem. A, 2, 13996 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Yang, Q. Li, J. Q. Jensen, C. Pan, L. N. Cleemann, N. J. Bjerrum, and R. He, J. Power Sources, 205, 114 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Wang, J. Zheng, Z. Zhao, and S. Zhang, J. Mater. Chem., 22, 22706 (2012).CrossRefGoogle Scholar
  18. 18.
    Z. Si, F. Gu, J. Guo, and F. Yan, J. Polym. Sci., Part B: Polym. Phys., 51, 1311 (2013).CrossRefGoogle Scholar
  19. 19.
    Q. Li, L. Liu, S. Liang, B. Jin, and R. Bai, Polym. Chem., 5, 2425 (2014).CrossRefGoogle Scholar
  20. 20.
    K. D. Papadimitriou, M. Geormezi, S. G. Neophytides, and K. Joannis, J. Membr. Sci., 433, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Hink, N. M. H. Duong, D. Henkensmeier, Y. K. Jin, J. H. Jang, and H. J. Kim, Solid State Ionics, 275, 80 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Bozkurt and W. H. Meyer, J. Polym. Sci., Part B: Polym. Phys., 39, 1987 (2001).CrossRefGoogle Scholar
  23. 23.
    X. Xu, H. Wang, S. Lu, Z. Guo, S. Rao, R. Xiu, and Y. Xiang, J. Power Sources, 286, 458 (2015).CrossRefGoogle Scholar
  24. 24.
    Z. Guo, X. Xu, Y. Xiang, S. Lu, and S. P. Jian, J. Mater. Chem. A., 3, 148 (2015).CrossRefGoogle Scholar
  25. 25.
    G. A. Giffin, S. Galbiati, M. Walter, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, J. Membr. Sci., 535, 122 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Yang, Q. Li, L. N. Cleemann, J. O. Jensen, C. Pan, N. J. Bjerrum, and R. He, Adv. Energy Mater., 3, 622 (2013).CrossRefGoogle Scholar
  27. 27.
    J. Yang, D. Aili, Q. Li, L. N. Cleemann, J. O. Jensen, N. J. Bjerrum, and R. He, ChemSusChem, 6, 275 (2013).CrossRefGoogle Scholar
  28. 28.
    Q. Yuan and G. Ker, J. Mater. Chem. A., 3, 3847 (2015).CrossRefGoogle Scholar
  29. 29.
    M. Hazarika and T. Jana, Eur. Polym. J., 49, 1564 (2013).CrossRefGoogle Scholar
  30. 30.
    J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, J. Membr. Sci., 522, 267 (2017).CrossRefGoogle Scholar
  31. 31.
    X. Song and G. Yin, Polymer, 47, 5044 (2006).CrossRefGoogle Scholar
  32. 32.
    K. A. Sung, K. W. Kim, K. H. Oh, M. J. Choo, K. W. Nam, and J. Ki, J. Power Sources, 196, 2483 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Mollá, V. Compañ, S. L. Luis, and J. Prats, Fuel Cells, 11, 897 (2011).CrossRefGoogle Scholar
  34. 34.
    Z. Li, L. Liu, L. Yu, L. Wang, J. Xi, X. Qiu, and L. Chen, J. Power Sources, 272, 427 (2014).CrossRefGoogle Scholar
  35. 35.
    H. Pu, Q. Liu, and Q. Lei, Polym. Eng. Sci., 45, 1395 (2005).CrossRefGoogle Scholar
  36. 36.
    S. Singha and T. Jana, Polymer, 55, 594 (2014).CrossRefGoogle Scholar
  37. 37.
    J. Yang, Y. Wang, G. Yang, and S. Zhan, J. Hydrogen Energy, 43, 8464 (2018).CrossRefGoogle Scholar
  38. 38.
    Q. Li, R. He, R. W. Berg, H. A. Hjuler, and N. J. Bjerrum, Solid State Ionics, 168, 177 (2004).CrossRefGoogle Scholar
  39. 39.
    M. K. Daletou, N. Gourdoupi, and J. L. Kallitsis, J. Membr. Sci., 252, 115 (2005).CrossRefGoogle Scholar
  40. 40.
    D. Aili, L. N. Cleemann, Q. Li, J. O. Jensen, E. Christensen, and N. J. Bjerrum, J. Mater. Chem., 22, 5444 (2012).CrossRefGoogle Scholar
  41. 41.
    Q. Li, H. A. Hjuler, and N. J. Bjerrum, J. Appl. Electrochem., 31, 773 (2001).CrossRefGoogle Scholar
  42. 42.
    J. Yang, L. N. Cleemann, T. Steenberg, C. Terkelsen, Q. Li, J. O. Jensen, H. A. Hjuler, N. J. Bjerrum, and R. He, Fuel Cells, 14, 7 (2014).CrossRefGoogle Scholar
  43. 43.
    Y. L. Ma, J. S. Wainrigh, M. H. Litt, and R. F. Savinell, J. Electrochem. Soc., 151, A8 (2004).CrossRefGoogle Scholar
  44. 44.
    R. He, Q. Che, and B. Sun, Fiber. Polym., 9, 679 (2008).CrossRefGoogle Scholar
  45. 45.
    Q. Li, J. O. Jensen, C. Pan, V. Bandur, M. S. Nilsson, F. Schönberger, A. Chromik, M. Hein, T. Häring, J. Kerres, and N. J. Bjerrum, Fuel Cells, 8, 188 (2008).CrossRefGoogle Scholar
  46. 46.
    R. He, Q. Li, A. Bach, J. O. Jensen, and N. J. Bjerrum, J. Membr. Sci., 277, 38 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Xiaorui Ren
    • 1
  • Huanhuan Li
    • 1
  • Ke Liu
    • 1
  • Hongyi Lu
    • 1
  • Jingshuai Yang
    • 1
    Email author
  • Ronghuan He
    • 1
  1. 1.Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina

Personalised recommendations