Fibers and Polymers

, Volume 19, Issue 12, pp 2524–2532 | Cite as

Metal-free Dyeing of Cotton Fabric Using Mangrove Bark Polyphenols via Azoic Dyeing

  • Nattaya VuthiganondEmail author
  • Monthon Nakpathom
  • Rattanaphol Mongkholrattanasit


This study proposed a novel azoic dyeing method, in which mangrove bark extract was used as the colorant. This approach eliminates the use of toxic metallic mordants. Polyphenols from mangrove bark were selected as the natural coupling component. These were applied to cotton fabric using an exhaust method, then reacted with diazonium salt prepared from a powerful primary aromatic amine (p-nitroaniline). Four concentrations of p-nitroaniline were tested from 0.5-7 % owf, produced a range of shades from pale to dark. The study confirmed that fabric was effectively and efficiently dyed with a high degree of color yield. Azoic dyeing produced a uniform bright yellow shade, with homogeneous penetration of the dye molecules. An extended range of plant materials were then investigated, and a significant correlation was found between the total phenolic content of the plant materials and the K/S of the dyed cotton. This confirmed that the proposed method can be used to fix natural dye to a cotton substrate, as long as the plant extract contained polyphenol. The colorimetric properties (L* a* b*, and K/S) of the dyed fabric were compared with those produced by traditional mordants (AlK(SO4)2 and FeSO4). The formation of azo linkages on the fabric was confirmed by ATR FTIR. Color fastness to washing and dry crock fastness were found to be acceptable, though the wet crock fastness and light fastness were low, due to the formation of surface dye on the fibers.


Mangrove bark Polyphenols Azoic dyeing Cotton Diazotization and coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Samanta, P. Agarwal, and S. Datta, J. Nat. Fibers, 6, 171 (2009).CrossRefGoogle Scholar
  2. 2.
    L. Ammayappan and D. B. B. Shakyawar, J. Nat. Fibers, 13, 42 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Wilson, C. Carr, and M. Hacke, Chemistry Central J., 6, 44 (2012).CrossRefGoogle Scholar
  4. 4.
    P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, EXS, 101, 133 (2012).Google Scholar
  5. 5.
    Agency for Toxic Substances and Diesease Registry (ATSDR), Toxicological Profile for Chromium, Atlanta, GA: U.S Department of Health and Human Services, Public Health Service.Google Scholar
  6. 6.
    Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH), European Commission, EC 1907/2006.Google Scholar
  7. 7.
    U.S. EPA, Diseases Caused by Chromium and Its Toxic Compounds, Cincinnati, OH: Office of Research and Development, U.S. Environmental Protection Agency. 1986.Google Scholar
  8. 8.
    National Toxicology Program, NTP Technical Report on the Toxicology and Carcinogenesis Studies of Sodium Dichromate Dihydrate (CAS NO. 7789–12–0) in F344/N Rats and B6C3F1 Mice (Drinking Water Studies), NIH Publication No. 08–5887, NTP TR-546, 2008.Google Scholar
  9. 9.
    M. Nakpathom, B. Somboon, N. Narumol, and R. Mongkholrattanasit, J. Nat. Fibers, 15, 668 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Oktav Bulut and E. Akar, J. Cleaner Prod., 32, 1 (2012).CrossRefGoogle Scholar
  11. 11.
    M. M. Kamel, M. M. El Zawahry, N. S. E. Ahmed, and F. Abdelghaffar, Ultrason. Sonochem., 16, 243 (2009).CrossRefGoogle Scholar
  12. 12.
    M. M. Kamel, M. M. El Zawahry, N. S. E. Ahmed, and F. Abdelghaffar, Ind. Crops Prod., 34, 1410 (2011).CrossRefGoogle Scholar
  13. 13.
    O. A. Hakeim, A. Abou-Okeil, L. A. W. Abdou, and A. Waly, J. Appl. Polym. Sci., 97, 559 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Rattanaphani, M. Chairat, J. B. Bremner, and V. Rattanaphani, Dyes Pigm., 72, 88 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Haji, M. K. Mehrizi, and J. Sharifzadeh, Fiber. Polym., 17, 1480 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Guesmi, N. Ladhari, N. B. Hamadi, M. Msaddek, and F. Sakli, J. Cleaner Prod., 39, 97 (2013).CrossRefGoogle Scholar
  17. 17.
    Ö. Erdem Ismal, L. Yildirim, and E. Özdogan, J. Cleaner Prod., 70, 61 (2014).CrossRefGoogle Scholar
  18. 18.
    L. J. Rather, I. Shahid Ul, M. Shabbir, M. N. Bukhari, M. Shahid, M. A. Khan, and F. Mohammad, J. Environ. Chem. Eng., 4, 3041 (2016).CrossRefGoogle Scholar
  19. 19.
    Ö. E. Ismal, Fiber. Polym., 18, 773 (2017).CrossRefGoogle Scholar
  20. 20.
    H. F. Mansour and S. Heffernan, Clean Technol. Environ. Policy, 13, 207 (2011).CrossRefGoogle Scholar
  21. 21.
    I. A. Bhatti, S. Adeel, M. A. Jamal, M. Safdar, and M. Abbas, Radiat. Phys. Chem., 79, 622 (2010).CrossRefGoogle Scholar
  22. 22.
    A. A. Khan, N. Iqbal, S. Adeel, M. Azeem, F. Batool, and I. A. Bhatti, Dyes Pigm., 103, 50 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Adeel, T. Gulzar, M. Azeem, R. Fazalur, M. Saeed, I. Hanif, and N. Iqbal, Radiat. Phys. Chem., 130, 35 (2017).CrossRefGoogle Scholar
  24. 24.
    L. Chirila, A. Popescu, M. Cutrubinis, I. Stanculescu, and V. I. Moise, Radiat. Phys. Chem., 145, 97 (2018).CrossRefGoogle Scholar
  25. 25.
    J. T. Li, M. X. Sun, and Y. Yin, Ultrason. Sonochem., 17, 359 (2010).CrossRefGoogle Scholar
  26. 26.
    Y. Zou, H. Wu, Y. Hu, H. Liu, X. Zhao, H. Ji, and D. Shi, Ultrason. Sonochem., 18, 708 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Guesmi, N. Ladhari, and F. Sakli, Ultrason. Sonochem., 20, 571 (2013).CrossRefGoogle Scholar
  28. 28.
    Ö. Erdem Ismal, L. Yildirim, and E. Özdogan, J. Text. Inst., 106, 343 (2015).CrossRefGoogle Scholar
  29. 29.
    W. Haddar, N. Baaka, N. Meksi, M. B. Ticha, A. Guesmi, and M. F. Mhenni, Fiber. Polym., 16, 1506 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Ben Ticha, W. Haddar, N. Meksi, A. Guesmi, and M. F. Mhenni, Carbohydr. Polym., 154, 287 (2016).CrossRefGoogle Scholar
  31. 31.
    A. Farooq, M. A. Ashraf, A. Rasheed, J. U. Khan, and F. Irshad, J. Nat. Fibers, 15, 680 (2017).CrossRefGoogle Scholar
  32. 32.
    N. Baaka, W. Haddar, M. Ben Ticha, M. T. P. Amorim, and M. F. M’Henni, Nat. Prod. Res., 31, 1655 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Zhang and R. Tsao, Current Opin. Food Sci., 8, 33 (2016).CrossRefGoogle Scholar
  34. 34.
    Y. A. Kim, J. B. Keogh, and P. M. Clifton, Nutrients, 8 (2016).Google Scholar
  35. 35.
    N. Punrattanasin in “Proceeding of the 2nd Technology and Innovation for Sustainable Development”, 624, Khon Kaen, Thailand, Jan. 28–29, 2008.Google Scholar
  36. 36.
    N. Punrattanasin, Adv. Mater. Res., 331, 279 (2011).CrossRefGoogle Scholar
  37. 37.
    C. W. Oo, M. J. Kassim, and A. Pizzi, Ind. Crops Prod., 30, 152 (2009).CrossRefGoogle Scholar
  38. 38.
    C. W. Oo, A. Pizzi, H. Pasch, and M. J. Kassim, J. Appl. Polym. Sci., 109, 963 (2008).CrossRefGoogle Scholar
  39. 39.
    V. J. Chapman, Trop. Ecol., 11, 1 (1970).Google Scholar
  40. 40.
    A. A. Rahim, E. Rocca, J. Steinmetz, M. Jain Kassim, M. Sani Ibrahim, and H. Osman, Food Chem., 107, 200 (2008).CrossRefGoogle Scholar
  41. 41.
    A. A. Rahim, E. Rocca, J. Steinmetz, M. J. Kassim, R. Adnan, and M. Sani Ibrahim, Corros. Sci., 49, 402 (2007).CrossRefGoogle Scholar
  42. 42.
    V. L. Singleton and J. A. Rossi, Am. J. Enol. Viticult., 16, 144 (1965).Google Scholar
  43. 43.
    C. Chung, M. Lee, and E. K. Choe, Carbohydr. Polym., 58, 417 (2004).CrossRefGoogle Scholar
  44. 44.
    G. W. Rayner-Canham and D. Sutton, Can. J. Chem., 49, 3994 (1971).CrossRefGoogle Scholar
  45. 45.
    F. Zimmermann, T. Lippert, C. Beyer, J. Stebani, O. Nuyken, and A. Wokaun, Appl. Spectros., 47, 986 (1993).CrossRefGoogle Scholar
  46. 46.
    K. Karrenbauer, H. Behringer, and H. Rehberg, U.S. Patent, 4439361 (1984).Google Scholar
  47. 47.
    L. Panzella, P. Manini, A. Napolitano, and M. D’Ischia, Chem. Res. Toxicol., 18, 722 (2005).CrossRefGoogle Scholar
  48. 48.
    Y. Ding and H. S. Freeman, Color. Technol., 133, 369 (2017).CrossRefGoogle Scholar
  49. 49.
    Y. Shin and S. H. Lee, J. Korean Soc. Cloth. Text., 30, 1708 (2006).Google Scholar
  50. 50.
    R. R. He, H. Kurihara, and V. R. Preedy in “Tea in Health and Disease Prevention” (V. R. Preedy Ed.), Academic Press, 2013.Google Scholar
  51. 51.
    T. B. Machado, A. V. Pinto, M. C. F. R. Pinto, I. C. R. Leal, M. G. Silva, A. C. F. Amaral, R. M. Kuster, and K. R. Netto-dosSantos, Int. J. Antimicrob. Agents, 21, 279 (2003).CrossRefGoogle Scholar
  52. 52.
    S. Voravuthikunchai, A. Lortheeranuwat, W. Jeeju, T. Sririrak, S. Phongpaichit, and T. Supawita, J. Ethnopharmacol., 94, 49 (2004).CrossRefGoogle Scholar
  53. 53.
    N. S. Al-Zoreky, Int. J. Food Microbiol., 134, 244 (2009).CrossRefGoogle Scholar
  54. 54.
    P. Jing, V. Noriega, S. J. Schwartz, and M. M. Giusti, J. Agric. Food Chem., 55, 8625 (2007).CrossRefGoogle Scholar
  55. 55.
    F. Lao and M. M. Giusti, J. Cereal Sci., 80, 87 (2018).CrossRefGoogle Scholar
  56. 56.
    D. R. Waring in “The Chemistry and Application of Dyes” (D. R. Waring and G. Hallas Eds.), Plenum Press, New York, 1990.Google Scholar
  57. 57.
    J. Shore, “Cellulosics Dyeing”, Society of Dyers and Colourists, 1995.Google Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Nattaya Vuthiganond
    • 1
    Email author
  • Monthon Nakpathom
    • 2
  • Rattanaphol Mongkholrattanasit
    • 3
  1. 1.Division of Materials and Textile Technology, Faculty of Science and TechnologyThammasat University, Rangsit CenterPathumthaniThailand
  2. 2.Textile Lab, Polymer Research Unit, National Metal and Materials Technology CenterNational Science and Technology Development AgencyPathumthaniThailand
  3. 3.Department of Textile Chemistry Technology, Faculty of Industrial Textiles and Fashion DesignRajamangala University of Technology Phra NakhonBangkokThailand

Personalised recommendations