Fibers and Polymers

, Volume 19, Issue 11, pp 2245–2253 | Cite as

The Effect of Melanocyte Stimulating Hormone and Hydroxyapatite on Osteogenesis in Pulp Stem Cells of Human Teeth Transferred into Polyester Scaffolds

  • Marziyeh Aghazadeh
  • Mohammad Samiei
  • Vahideh Raeisdasteh Hokmabad
  • Effat Alizadeh
  • Neda Jabbari
  • Alexander Seifalian
  • Roya SalehiEmail author


Presently, tissue engineering is employed in the restoration and repair of tissue defects. Degradable scaffolds, stem cells and stimulating factors are employed in this method. In this study, the effect of melanocyte-stimulating hormone (MSH) and/or hydroxyapatite (HA) on proliferation, osteoblast differentiation, and mineralization of human dental pulp stem cells (hDPSCs) seeded on PLLA-PCL nanofibrous scaffolds was evaluated. For this aim, PLLA-PCL-HA nanofibrous scaffolds were fabricated using electrospinning method. FE-SEM images exhibited that all nanofibers had bead-free morphologies with average diameters ranging from 150–205 nm. Human DPSCs seeded into PLLA-PCL nanofibers were treated with MSH. Cell viability, proliferation, morphology, osteogenic potential, and the expression of tissue-specific genes were assessed by means of MTT assay, FE-SEM, alizarin red S staining, and RT-PCR analysis. hDPSCs exhibited improved adhesion and proliferation capacity on the PLLA-PCL-HA nanofibers treated with MSH compared to other groups (p<0.05). Additionally, PLLA-PCL-HA nanofibers treated with MSH exhibited significantly higher mineralization and alkaline phosphatase activity than other groups. RT-PCR results confirmed that PLLA-PCL-HA nanofibers enriched with MSH could significantly unregulated the gene expression of BMP2, osteocalcin, RUNX2 and DSPP that correlated to osteogenic differentiation (p<0.05). Based on results, incorporation of HA nanoparticles in PLLA-PCL nanofibers and addition of MSH in media exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs, and therefore assumed to be a favorable scaffold for bone tissue engineering applications.


Melanocyte stimulating hormone Human dental pulp stem cells Polyester scaffolds Hydroxyapatite Tissue engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. C. Gurtner, M. J. Callaghan, and M. T. Longaker, Annu. Rev. Med., 58, 299 (2007).CrossRefGoogle Scholar
  2. 2.
    L. Casagrande, M. M. Cordeiro, S. A. Nör, and J. E. Nör, Odontology, 99, 1 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Stadtfeld and K. Hochedlinger, Genes Dev., 24, 2239 (2010).CrossRefGoogle Scholar
  4. 4.
    S. Guo, Y. Xie, J.–B. Fan, F. Ji, S. Wang, and H. Fei, Biochem. Biophys. Res. Commun., 469, 281 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Adachi, T. Nakano, H. Vliagoftis, and D. D. Metcalfe, J. Immunol., 163, 3363 (1999).Google Scholar
  6. 6.
    S.–I. Harada and G. A. Rodan, Nature, 423, 349 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Nakashima, K. Iohara, and M. Murakami, Endod. Top., 28, 38 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Zhang, X. F. Walboomers, T. H. van Kuppevelt, W. F. Daamen, Z. Bian, and J. A. Jansen, Biomaterials, 27, 5658 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Rücker, M. W. Laschke, D. Junker, C. Carvalho, A. Schramm, R. Mülhaupt, N.–C. Gellrich, and M. D. Menger, Biomaterials, 27, 5027 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Z. Fu, X. H. Wang, G. Guo, S. Shi, M. Fan, H. Liang, F. Luo, and Z. Y. Qian, J. Biomed. Mater. Res., Part B: Appl. Biomater., 97, 74 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Dånmark, Ph. D. Dissertation, KTH Royal Institute of Technology, Sweden, 2011.Google Scholar
  12. 12.
    V. Raeisdasteh Hokmabad, S. Davaran, A. Ramazani, and R. Salehi, J. Biomater. Sci., Polym. Ed., 28, 1797 (2017).CrossRefGoogle Scholar
  13. 13.
    F. Asghari, R. Salehi, M. Agazadeh, E. Alizadeh, K. Adibkia, M. Samiei, A. Akbarzadeh, N. A. Aval, and S. Davaran, Int. J. Polym. Mater. Polym. Biomater., 65, 720 (2016).CrossRefGoogle Scholar
  14. 14.
    J. A. Jadlowiec, A. B. Celil, and J. O. Hollinger, Expert Opin. Biol. Ther., 3, 409 (2003).Google Scholar
  15. 15.
    K. G. Jain, S. Mohanty, A. R. Ray, R. Malhotra, and B. Airan, Indian J. Med. Res., 142, 747 (2015).CrossRefGoogle Scholar
  16. 16.
    R. M. Jin, N. Sultana, S. Baba, S. Hamdan, and A. F. Ismail, J. Nanomater., 16, 138 (2015).Google Scholar
  17. 17.
    L. Lao, Y. Wang, Y. Zhu, Y. Zhang, and C. Gao, J. Mater. Sci.: Mater. Med., 22, 1873 (2011).Google Scholar
  18. 18.
    G. Bluteau, H. Luder, C. De Bari, and T. Mitsiadis, Eur. Cells Mater, 16, 9 (2008).Google Scholar
  19. 19.
    M. Aghazadeh, M. Samiei, E. Alizadeh, P. Porkar, M. Bakhtiyari, and R. Salehi, Fiber. Polym., 18, 1468 (2017).CrossRefGoogle Scholar
  20. 20.
    W. Zhang, N. Yang, and X.–M. Shi, J. Biol. Chem., 283, 4723 (2008).CrossRefGoogle Scholar
  21. 21.
    J. H. Lee, T. G. Park, H. S. Park, D. S. Lee, Y. K. Lee, S. C. Yoon, and J.–D. Nam, Biomaterials, 24, 2773 (2003).CrossRefGoogle Scholar
  22. 22.
    A. L. Boskey, J. Cell. Biochem., 72, 83 (1998).CrossRefGoogle Scholar
  23. 23.
    S. Levenberg and R. Langer, Curr. Top. Dev. Biol., 61, 113 (2004).CrossRefGoogle Scholar
  24. 24.
    G. Millington, Clin. Exp. Dermatol., 31, 407 (2006).CrossRefGoogle Scholar
  25. 25.
    P. Aspenberg, L. I. Hansson, and K.–G. Thorngren, Cells Tissues Organs, 121, 84 (1985).CrossRefGoogle Scholar
  26. 26.
    J. Cornish, K. E. Callon, K. G. Mountjoy, U. Bava, J.–M. Lin, D. E. Myers, D. Naot, and I. R. Reid, Am. J. Physiol.–Endocrinol. Metab., 284, E1181 (2003).Google Scholar
  27. 27.
    A. Stenström, L. Hansson, and K.–G. Thorngren, Experientia, 35, 132 (1979).CrossRefGoogle Scholar
  28. 28.
    F. Fioretti, C. Mendoza–Palomares, M. Avoaka–Boni, J. Ramaroson, S. Bahi, L. Richert, F. Granier, N. Benkirane–Jessel, and Y. Haikel, J. Biomed. Nanotechnol., 7, 471 (2011).CrossRefGoogle Scholar
  29. 29.
    F. Fioretti, C. Mendoza–Palomares, M. Helms, D. Al Alam, L. Richert, Y. Arntz, S. Rinckenbach, F. Garnier, Y. Haïkel, and S. C. Gangloff, ACS Nano, 4, 3277 (2010).CrossRefGoogle Scholar
  30. 30.
    N. Benkirane–Jessel, C. M. Palomares, and F. Fioretti, “Compound Comprising α–MSH for Use in Endodontic Regeneration”, Google Patents, 2014.Google Scholar
  31. 31.
    P. Broulik, Physiol. Res., 45, 449 (1996).Google Scholar
  32. 32.
    S. Thaweboon, B. Thaweboon, P. Chunhabundit, and P. Suppukpatana, Southeast Asian J. Trop. Med. Public Health, 34, 915 (2003).Google Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Marziyeh Aghazadeh
    • 1
  • Mohammad Samiei
    • 2
  • Vahideh Raeisdasteh Hokmabad
    • 3
  • Effat Alizadeh
    • 4
  • Neda Jabbari
    • 5
  • Alexander Seifalian
    • 6
  • Roya Salehi
    • 7
    Email author
  1. 1.Stem Cell Research Center and Oral Medicine Department of Dental FacultyTabriz University of Medical SciencesTabrizIran
  2. 2.Endodontics Department of Dental FacultyTabriz University of Medical SciencesTabrizIran
  3. 3.Department of ChemistryUniversity of ZanjanZanjanIran
  4. 4.Stem Cell Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical ScienceTabriz University of Medical SciencesTabrizIran
  5. 5.Under Graduate Student of Dental FacultyTabriz University of Medical SciencesTabrizIran
  6. 6.Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) The London BioScience Innovation CentreLondonUnited Kingdom
  7. 7.Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical ScienceTabriz University of Medical SciencesTabrizIran

Personalised recommendations