Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2548–2563 | Cite as

Production of Metal Oxide Containing Antibacterial Coated Textile Material and Investigation of the Mechanism of Action

  • Gorkem GedikEmail author
  • Aysun Aksit
  • Birol Engin
  • Ufuk Paksu
Article
  • 33 Downloads

Abstract

The main aim of this study was to produce PVC coated textile based antibacterial textile material and to investigate the antibacterial mechanism with detailed analyzes. Metal oxide (calcium oxide, zinc oxide, magnesium oxide) powders were used to provide antibacterial functionality to coated materials. Metal oxide concentrations were varied between 5–35 %. Antibacterial tests were performed according to ISO 22196–2011 standard. Antibacterial efficiency of the samples was tested for each metal oxide type and concentration with L. innocua species. The antibacterial mechanism was investigated with ESR technique, fluorescent microscobe and microplate reader using DCFH-DA probe, UV-vis spectrometer using fluorescein probe. The results indicated that the antibacterial effect of used metal oxides was strongly arisen from radical oxygen species. The morphology of coatings was investigated with SEM and the distribution of metal oxide particles on the surface was examined with EDX analysis and EDX mapping. The changes on the molecular basis of the coating due to the metal oxide addition was analyzed with FT-IR spectroscopy. High antibacterial efficiencies (up to 100 %) were detected. It is suggested that the non-toxic metal oxides can be used as an effective and economically feasible alternative to conventional antibacterial additives for industrial applications such as conveyor belts.

Keywords

Metal oxide Antibacterial Conveyor belt ESR Oxygen radical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Heide, Trends Food Sci. Technol., 18, 89 (2007).CrossRefGoogle Scholar
  2. 2.
    F. Perez-Rodriguez, A. Valero, E. Carrasco, R. M. Garcia, and G. Zurera, Trends Food Sci. Technol., 19, 131 (2008).CrossRefGoogle Scholar
  3. 3.
    N. Cioffi and M. Rai, “Nano-Antimicrobials”, London, England, 2012.CrossRefGoogle Scholar
  4. 4.
    A. Annath, S. Dharaneedharan, H. Seo, M. Heo, and J. Boo, Chem. Eng. J., 322, 742 (2017).CrossRefGoogle Scholar
  5. 5.
    T. O. Okyay, R. K. Bala, H. N. Nguyen, R. Atalay, and Y. Bayam, RSC Adv., 5, 2568 (2015).CrossRefGoogle Scholar
  6. 6.
    V. B. Schwartz, F. Thetiot, S. Ritz, S. Pütz, L. Choritz, A. Lappas, R. Förch, K. Landfester, and U. Jonas, Adv. Funct. Mater., 22, 2376 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Jaissai, S. Baruah, and J. Dutta, Beilstein J. Nanotechnol., 3, 684 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Li, L. Zhu, and D. Lin, Environ. Sci. Technol., 45, 1977 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad, Nano -Micro Lett., 7, 219 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu, J. Chem. Eng. Jpn., 28, 288 (1995).CrossRefGoogle Scholar
  11. 11.
    Y. Xie, Y. He, P. L. Irwin T. Jin, and X. Shi, Appl. Environ. Microbiol., 77, 2325 (2011).CrossRefGoogle Scholar
  12. 12.
    O. Yamamoto, Int. J. Inorg. Mater., 3, 643 (2001).CrossRefGoogle Scholar
  13. 13.
    L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O’Neil, and D. W. York, J. Nanopart Res., 12, 1625 (2010).CrossRefGoogle Scholar
  14. 14.
    J. M. Yousef and E. N. Danial, J. Health Sci., 2, 38 (2012).Google Scholar
  15. 15.
    K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, Ceram. Int., 36, 497 (2010).CrossRefGoogle Scholar
  16. 16.
    L. Huang, D. Li, Y. Lin, D. G. Evans, and X. Duan, J. Inorg. Biochem., 99, 986 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Fiedot, I. Maliszewska, O. Rac-Rumijowska, P. Suchorska-Wozniak, A. Lewinska, and H. Teterycz, Materials, 10, 353 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui, Langmuir, 29, 5573 (2013).CrossRefGoogle Scholar
  19. 19.
    V. L. Prasanna and R. Vijayaraghavan, Langmuir, 31, 9155 (2015).CrossRefGoogle Scholar
  20. 20.
    D. Wang, L. Zhao, H. Ma, H. Zhang, and L. Guo, Environ. Sci. Technol., 51, 10137 (2017).CrossRefGoogle Scholar
  21. 21.
    Farouk, A. Moussa, S. Ulbricht, M. Schollmeyer, and E. Textor, Text. Res. J., 84, 40 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu, J. Chem. Eng. Jpn., 29, 627 (1996).CrossRefGoogle Scholar
  23. 23.
    J. Sawai, H. Kajima, A. Hashimoto, S. Shoji, T. Sawaki, and A. Hakoda, World J. Microbiol. Biotechnol., 16, 187 (2000).CrossRefGoogle Scholar
  24. 24.
    A. Roy and S. S. Gauri, J. Biomed. Nanotechnol., 9, 1 (2013).CrossRefGoogle Scholar
  25. 25.
    S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovic, R. Jelinek, and A. Gedanken, Adv. Funct. Mater., 15, 1708 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Sawai, J. Microbiol. Methods, 54, 177 (2003).CrossRefGoogle Scholar
  27. 27.
    K. R. Raghupati, R. T. Koodali, and A. C. Manna, Langmuir, 27, 4020 (2011).CrossRefGoogle Scholar
  28. 28.
    A. Roy, S. S. Gauri, M. Bhattacharya, and J. Bhattacharya, J. Biomed. Nanotechnol., 9, 1 (2013).CrossRefGoogle Scholar
  29. 29.
    Y. Xu and M. A. A. Schoonen, Am. Mineral., 85, 543 (2000).CrossRefGoogle Scholar
  30. 30.
    Y. Li, W. Zhang, J. Niu, and Y. Chen, ACS Nano, 6, 5164 (2012).CrossRefGoogle Scholar
  31. 31.
    W. He, Y. Liu, W. G. Wamer, and J. Yin, J. Food Drug Anal., 22, 49 (2014).CrossRefGoogle Scholar
  32. 32.
    V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. L. Zweier, Anal. Biochem., 247, 404 (1997).CrossRefGoogle Scholar
  33. 33.
    A. Samouilov, V. Roubaud, P. Kuppusamy, and J. L. Zweier, Anal. Biochem. 334, 145 (2004).CrossRefGoogle Scholar
  34. 34.
    A. Aranda, L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. V. Castell, and L. Gombau, Toxicol. in Vitro, 27, 954 (2013).CrossRefGoogle Scholar
  35. 35.
    D. Armstrong, “Advanced Protocols in Oxidative Stress II”, New York, USA, 2010.CrossRefGoogle Scholar
  36. 36.
    R. P. Rastogi, S. P. Singh, D. Hader, and R. P. Sinha, Biochem. Biophys. Res. Commun., 397, 603 (2010).CrossRefGoogle Scholar
  37. 37.
    J. Hua, M. Shao, L. Cheng, X. Wang, Y. Fu, and D. D. D. Ma, J. Phys. Chem. Solids, 70, 192 (2009).CrossRefGoogle Scholar
  38. 38.
    M. Bardhan, G. Mandal, and T. Ganguly, J. Nanosci. Nanotechnol., 11, 3418 (2011).CrossRefGoogle Scholar
  39. 39.
    E. C. Friedly, MS Thesis, University of Arkansas. Arkansas, USA, 2007.Google Scholar
  40. 40.
    B. Mizrak, Personal Contact. Rultrans Transmisyon A. S. Kemalpasa/Izmir-Turkey, 2016.Google Scholar
  41. 41.
    A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. G. Lubart, and R. Lubart, J. Phys. Chem. C, 113, 15997 (2009).CrossRefGoogle Scholar
  42. 42.
    G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, Adv. Funct. Mater., 19, 842 (2009).CrossRefGoogle Scholar
  43. 43.
    S. L. Baum, I. G. M. Anderson, R. R. Baker, D. M. Murphy, and C. C. Rowlands, Anal. Chim. Acta, 481, 1 (2003)CrossRefGoogle Scholar
  44. 44.
    UK Standards for Microbiology Investigations - Identification of Listeria Species, and other Non-sporing Gram Positive Rods (except Corynebacterium). Public Health England. Bacteriology–Identification, ID 3, Issue no: 3. 1, Issue date: 29. 10. 2014.Google Scholar
  45. 45.
    M. Kurth, P. C. J. Graat, H. D. Carstanjen, and E. J. Mittemeijer, Surf. Interface Anal., 38, 931 (2006).CrossRefGoogle Scholar
  46. 46.
    E. Finkelstein, G. M. Rosen, and E. J. Rauckman, J. Am. Chem. Soc., 102, 4994 (1980).CrossRefGoogle Scholar
  47. 47.
    S. Ramesh, K. H. Leen, K. Kumutha, and A. K. Arof, Spectrochim. Acta, Part A, 66, 1237 (2007).CrossRefGoogle Scholar
  48. 48.
    M. A. Silva, M. G. A. Vieria, A. C. G. Maçumoto, and M. M. Beppu, Polym. Test., 30, 478 (2011).CrossRefGoogle Scholar
  49. 49.
    D. L. Tabb and J. L. Koenig, Macromolecules, 8, 929 (1975).CrossRefGoogle Scholar
  50. 50.
    S. Nasrazadani and E. Eureste, “Application of FTIR for Quantitative Lime Analysis”, 5-9028-01 Project Report University of North Texas. Texas, USA, 2008.Google Scholar
  51. 51.
    P. H. Daniels, J. Vinyl Add. Tech., 15, 219 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Gorkem Gedik
    • 1
    Email author
  • Aysun Aksit
    • 1
  • Birol Engin
    • 2
  • Ufuk Paksu
    • 2
  1. 1.Textile Engineering DepartmentDokuz Eylul UniversityIzmirTurkey
  2. 2.Physics DepartmentDokuz Eylul UniversityIzmirTurkey

Personalised recommendations