Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1472–1478 | Cite as

A Novel Needleless Electrospinning System Using a Moving Conventional Yarn as the Spinneret

  • Hai-Jun He
  • Cheng-Kun Liu
  • Kolos Molnar
Article
  • 20 Downloads

Abstract

A novel electrospinning system for the mass production of nanofibers using a moving conventional yarn as the spinneret was designed. In the process of electrospinning, a large number of jets were ejected from the surface of the polymer liquid carried by the yarn. The effects of conductivity, surface structure and fineness of the yarn on the morphology and productivity of the obtained nanofibers were discussed in the research. Results indicate that the productivity of nanofibers can be increased up to 1.17 g/h with our method, which is a more than fourfold enhancement compared to less than 0.3 g/h with the method of single-needle electrospinning. Both issues of needle clogging in needle electrospinning and intense solvent evaporation due to the open solution surface in most needleless electrospinning techniques can be avoided.

Keywords

Needleless electrospinning Nanofiber Yarn spinnerets Productivity Industrialization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Subbiah, G. S. Bhat, R. W. Tock, S. Pararneswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005).CrossRefGoogle Scholar
  2. 2.
    E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowsk, and G. L. Bowlin, J. Macromol. Sci. Part A-Pure. Appl. Chem., 38A, 1231 (2001).CrossRefGoogle Scholar
  3. 3.
    A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Llaguno, Synth. Met., 119, 27 (2001).CrossRefGoogle Scholar
  4. 4.
    S. H. Lee, B. C. Ku, X. Wang, L. A. Samuelson, and J. Kumar, Mat. Res. Soc. Symp. Pro., 708, 403 (2002).Google Scholar
  5. 5.
    C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999).CrossRefGoogle Scholar
  6. 6.
    E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Márquez, J. Graupera, L. J. del Valle, P. Turon, L. Franco, and J. Puiggalí, Express Polym. Lett., 11, 674 (2017).CrossRefGoogle Scholar
  8. 8.
    S. V. Lomov and K. Molnár, Express Polym. Lett., 10, 25 (2016).CrossRefGoogle Scholar
  9. 9.
    T. C. Mokhena, N. V. Jacobs, and A. S. Luyt, Express Polym. Lett., 11, 652 (2017).CrossRefGoogle Scholar
  10. 10.
    J. S. Varabhas, G. G. Chase, and D. H. Reneker, Polymer, 49, 4226 (2008).CrossRefGoogle Scholar
  11. 11.
    A. K. Higham, C. Tang, A. M. Landry, M. C. Pridgeon, E. M. Lee, A. L. Andrady, and S. A. Khan, AICHE J., 60, 1355 (2014).CrossRefGoogle Scholar
  12. 12.
    H. T. Niu and T. Lin, J. Nanomater., 2012, 725950 (2012).Google Scholar
  13. 13.
    S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 51, 5346 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Kumar, M. Wei, C. Barry, J. Chen, and J. Mead, Macromol. Mater. Eng., 295, 701 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Vaseashta, Appl. Phys. Lett., 90, 093115 (2007).CrossRefGoogle Scholar
  16. 16.
    N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, Nanotechnology, 22, 345301 (2011).CrossRefGoogle Scholar
  17. 17.
    K. M. Forward and G. C. Rutledge, Chem. Eng. J., 183, 492 (2012).CrossRefGoogle Scholar
  18. 18.
    G. J. Jiang, S. Zhang, and X. H. Qin, Mater. Lett., 106, 56 (2013).CrossRefGoogle Scholar
  19. 19.
    X. Wang, X. W. Hu, X. C. Qiu, X. Y. Huang, D. Z. Wu, and D. H. Sun, Mater. Lett., 99, 21 (2013).CrossRefGoogle Scholar
  20. 20.
    S. L. Liu, Y. Y. Huang, H. D. Zhang, B. Sun, J. C. Zhang, and Y. Z. Long, Mater. Res. Innov., 18, 833 (2014).Google Scholar
  21. 21.
    Z. Liu, R. X. Chen, and J. H. He, Mater. Des., 94, 496 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Molnar and Z. K. Nagy, Eur. Polym. J., 74, 279 (2016).CrossRefGoogle Scholar
  23. 23.
    P. Pokorny, E. Kostakova, F. Sanetrnik, P. Mikes, J. Chvojka, T. Kalous, M. Bilek, K. Pejchar, J. Valtera, and D. Lukas, Phys. Chem. Chem. Phys., 16, 26816 (2014).CrossRefGoogle Scholar
  24. 24.
    A. Balogh, R. Cselkó, B. Démuth, G. Verreck, J. Mensch, G. Marosi, and Z. K. Nagy, Int. J. Pharm., 495, 75 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Balogh, B. Farkas, A. Domokos, A. Farkas, B. Démuth, E. Borbás, B. Nagy, G. Marosi, and Z. K. Nagy, Eur. Polym. J., 95, 406 (2017).CrossRefGoogle Scholar
  26. 26.
    O. Jirsák, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, U. S. Patent, W02005024101 (2005).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Textile Science and EngineeringXi’an Polytechnic UniversityXi’anChina
  2. 2.Department of Polymer Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary
  3. 3.MTA-BME Research Group for Composite Science and TechnologyBudapestHungary
  4. 4.The School of MaterialsThe University of ManchesterManchesterUK

Personalised recommendations