Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1395–1402 | Cite as

Surface-Modified Cellulose Nanocrystal-incorporated Poly(butylene succinate) Nanocomposites

  • Se Youn Cho
  • Min Eui Lee
  • Hyo Won Kwak
  • Hyoung-Joon Jin
Article
  • 48 Downloads

Abstract

In this work, surface acetylation of cellulose nanocrystals was performed to improve their interfacial adhesion with hydrophobic polymer matrix and to restore their thermal stability by removing the sulfate groups. The morphological, chemical, and thermal characteristics of the surface-modified cellulose nanocrystals (ACNs) were confirmed by field emission-transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, poly(butylene succinate) (PBS)/ACNs nanocomposites were also prepared via melt-mixing process, and the reinforcing effects of ACNs on the thermal, mechanical, and biodegradable properties of the nanocomposites were investigated. The Young’s modulus and tensile strength of the PBS/ACN nanocomposites increased from 115.36 and 33.67 MPa for the neat PBS to 130.55 MPa and 39.97 MPa, respectively. The thermal stability and biodegradability of the nanocomposites also increased with increasing ACN content.

Keywords

Cellulose nanocrystals Surface acetylation Poly(butylene succinate) Nanocrystal reinforcement Nanocomposites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Prog. Polym. Sci., 37, 237 (2012).CrossRefGoogle Scholar
  2. 2.
    I. Vroman and L. Tighzert, Materials, 2, 307 (2009).CrossRefPubMedCentralGoogle Scholar
  3. 3.
    B. K. Kim, O. H. Kwon, W. H. Park, and D. Cho, Macromol. Res., 24, 734 (2016).CrossRefGoogle Scholar
  4. 4.
    V. Ojijo and S. Sinha Ray, Prog. Polym. Sci., 38, 1543 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Huan, L. Bai, G. Liu, W. Cheng, and G. Han, RSC Adv., 5, 50756 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Mariano, N. El Kissi, and A. Dufresne, J. Polym. Sci. Part B Polym. Phys., 52, 791 (2014).CrossRefGoogle Scholar
  7. 7.
    C. Miao and W. Y. Hamad, Cellulose, 20, 2221 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Renneckar, A. Zink-Sharp, A. R. Esker, R. K. Johnson, and W. G. Glasser in “Cellul. Nanocomposites”, American Chemical Society, pp.78–96, 2006.Google Scholar
  9. 9.
    X. Yang, H. Liu, Y. Zhao, and L. Liu, Fiber. Polym., 17, 1820 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Dufresne, Mater. Today, 16, 220 (2013).CrossRefGoogle Scholar
  11. 11.
    Z. Song, H. Xiao, and Y. Zhao, Carbohydr. Polym., 111, 442 (2014).CrossRefPubMedGoogle Scholar
  12. 12.
    B. Braun, J. R. Dorgan, and L. O. Hollingsworth, Biomacromolecules, 13, 2013 (2012).CrossRefPubMedGoogle Scholar
  13. 13.
    E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, and J. M. Kenny, Carbohydr. Polym., 87, 1596 (2012).CrossRefGoogle Scholar
  14. 14.
    E. Fortunati, M. Gigli, F. Luzi, F. Dominici, N. Lotti, M. Gazzano, A. Cano, A. Chiralt, A. Munari, J. M. Kenny, I. Armentano, and L. Torre, Carbohydr. Polym., 165, 51 (2017).CrossRefPubMedGoogle Scholar
  15. 15.
    M. A. S. Azizi Samir, F. Alloin, and A. Dufresne, Biomacromolecules, 6, 612 (2005).CrossRefPubMedGoogle Scholar
  16. 16.
    L. Chen, J. Y. Zhu, C. Baez, P. Kitin, and T. Elder, Green Chem., 18, 3835 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Roman and W. T. Winter, Biomacromolecules, 5, 1671 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, and Y. Hai, Carbohydr. Polym., 83, 1804 (2011).CrossRefGoogle Scholar
  19. 19.
    S. Y. Cho, H. H. Park, Y. S. Yun, and H.-J. Jin, Fiber. Polym., 14, 1001 (2013).CrossRefGoogle Scholar
  20. 20.
    A. C. Corrêa, E. de M. Teixeira, L. A. Pessan, and L. H. C. Mattoso, Cellulose, 17, 1183 (2010).CrossRefGoogle Scholar
  21. 21.
    F. Jiang, A. R. Esker, and M. Roman, Langmuir ACS J. Surf. Colloids, 26, 17919 (2010).CrossRefGoogle Scholar
  22. 22.
    L. Tang, B. Huang, Q. Lu, S. Wang, W. Ou, W. Lin, and X. Chen, Bioresour. Technol., 127, 100 (2013).CrossRefPubMedGoogle Scholar
  23. 23.
    H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, and L. Chen, J. Mater. Chem. A, 1, 3938 (2013).CrossRefGoogle Scholar
  24. 24.
    D.-Y. Kim, Y. Nishiyama, and S. Kuga, Cellulose, 9, 361 (2002).CrossRefGoogle Scholar
  25. 25.
    S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, 3479 (2010).CrossRefPubMedGoogle Scholar
  27. 27.
    F. Cherhal, F. Cousin, and I. Capron, Biomacromolecules, 17, 496 (2016).CrossRefPubMedGoogle Scholar
  28. 28.
    A. A. Oun and J.-W. Rhim, Carbohydr. Polym., 134, 20 (2015).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Wada, L. Heux, and J. Sugiyama, Biomacromolecules, 5, 1385 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    M.-C. Li, C. Mei, X. Xu, S. Lee, and Q. Wu, Polymer, 107, 200 (2016).CrossRefGoogle Scholar
  31. 31.
    N. Abidi, N. Cabrales, and C. H. Haigler, Carbohydr. Polym., 100, 9 (2014).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Dawy and A. A. Nada, Polym.-Plast. Technol. Eng., 42, 643 (2003).CrossRefGoogle Scholar
  33. 33.
    Y. Tamada, J. Appl. Polym. Sci., 87, 2377 (2003).CrossRefGoogle Scholar
  34. 34.
    N. Lin, J. Huang, P. R. Chang, J. Feng, and J. Yu, Carbohydr. Polym., 83, 1834 (2011).CrossRefGoogle Scholar
  35. 35.
    F. Dong, M. Yan, C. Jin, and S. Li, Polymers, 9, 346 (2017).CrossRefGoogle Scholar
  36. 36.
    J. O. Zoppe, L.-S. Johansson, and J. Seppälä, Carbohydr. Polym., 126, 23 (2015).CrossRefPubMedGoogle Scholar
  37. 37.
    A. G. Dumanlı and A. H. Windle, J. Mater. Sci., 47, 4236 (2012).CrossRefGoogle Scholar
  38. 38.
    O. Arous, H. Kerdjoudj, and P. Seta, J. Membr. Sci., 241, 177 (2004).CrossRefGoogle Scholar
  39. 39.
    S. Julien, E. Chornet, and R. P. Overend, J. Anal. Appl. Pyrolysis, 27, 25 (1993).CrossRefGoogle Scholar
  40. 40.
    J. George, K. V. Ramana, A. S. Bawa, and Siddaramaiah, Int. J. Biol. Macromol., 48, 50 (2011).CrossRefPubMedGoogle Scholar
  41. 41.
    A. Kumar, Y. S. Negi, V. Choudhary, and N. K. Bhardwaj, J. Mater. Phys. Chem. J. Mater. Phys. Chem., 2, 1 (2014).Google Scholar
  42. 42.
    P. Tingaut, T. Zimmermann, and F. Lopez-Suevos, Biomacromolecules, 11, 454 (2010).CrossRefPubMedGoogle Scholar
  43. 43.
    Y. S. Yun, Y. H. Bae, D. H. Kim, J. Y. Lee, I.-J. Chin, and H.-J. Jin, Carbon, 49, 3553 (2011).CrossRefGoogle Scholar
  44. 44.
    J. Lu and L. T. Drzal, J. Polym. Sci. Part B Polym. Phys., 48, 153 (2010).CrossRefGoogle Scholar
  45. 45.
    S.-S. Wong, S. Kasapis, and Y. M. Tan, Carbohydr. Polym., 77, 280 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Pei, Q. Zhou, and L. A. Berglund, Compos. Sci. Technol., 70, 815 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Se Youn Cho
    • 1
    • 2
  • Min Eui Lee
    • 1
  • Hyo Won Kwak
    • 1
  • Hyoung-Joon Jin
    • 1
  1. 1.WCSL (World Class Smart Lab) of Green Lab., Department of Polymer Science and EngineeringInha UniversityIncheonKorea
  2. 2.Department of Industrial EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations