Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1479–1489 | Cite as

Modeling the Fibrillation of Kevlar® KM2 Single Fibers Subjected to Transverse Compression

  • Jeffrey M. Staniszewski
  • Subramani Sockalingam
  • Travis A. Bogetti
  • John W. GillespieJr.
Article
  • 9 Downloads

Abstract

In this work, fibrillation is introduced as an energy absorbing mechanism in the modeling of Kevlar® KM2 single fibers subjected to quasi-static transverse compression. Fibrillation is simulated using a finite element model of the fiber cross-section containing discrete fibrils connected by interfibrillar cohesive zones. Model predictions of nominal stress-strain response for an assumed bilinear cohesive traction-separation interfibrillar behavior are compared to experimental data. Analysis shows that modeling of the microstructural fibril network, represented by a distribution of strong cohesive interactions, is necessary to capture the experimental response. The model provides valuable insight into the unique deformation mechanisms governing fiber fibrillation under transverse compression.

Keywords

Aramid fiber Fibrillated microstructure Finite element Transverse compression Multiscale modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. S. Lee, E. D. Wetzel, and N. J. Wagner, J. Mater. Sci., 38, 2825 (2003).CrossRefGoogle Scholar
  2. 2.
    A. Tabiei and G. Nilakantan, Appl. Mech. Rev., 61, 010801 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Grujicic, G. Arakere, T. He, W. C. Bell, B. A. Cheeseman, C. F. Yen, and B. Scott, Mater. Sci. Eng. A, 498, 231 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Karthikeyan and B. P. Russell, Mater. Des., 63, 115 (2014).CrossRefGoogle Scholar
  5. 5.
    C. Y. Tham, V. B. C. Tan, and H.-P. Lee, Int. J. Impact Eng., 35, 304 (2008).CrossRefGoogle Scholar
  6. 6.
    T. G. Zhang, S. S. Satapathy, L. R. Vargas-Gonzalez, and S. M. Walsh, Compos. Struct., 133, 191 (2015).CrossRefGoogle Scholar
  7. 7.
    J. A. Bencomo-Cisneros, A. Tejeda-Ochoa, J. A. García-Estrada, C. A. Herrera-Ramírez, A. Hurtado-Macías, R. Martínez-Sánchez, and J. M. Herrera-Ramírez, J. Alloy. Compd., 536, S456 (2012).CrossRefGoogle Scholar
  8. 8.
    A. R. Bunsell, J. Mater. Sci., 10, 1300 (1975).CrossRefGoogle Scholar
  9. 9.
    M. Cheng, W. Chen, and T. Weerasooriya, J. Eng. Mater.-T. ASME., 127, 197 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Lim, W. W. Chen, and J. Q. Zheng, Polym. Test., 29, 701 (2010).CrossRefGoogle Scholar
  11. 11.
    V. B. C. Tan, X. S. Zeng, and V. P. W. Shim, Int. J. Impact Eng., 35, 1303 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Cheng and W. Chen, Int. J. Damage Mech., 15, 121 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Cheng, W. Chen, and T. Weerasooriya, Int. J. Solids Struct., 41, 6215 (2004).CrossRefGoogle Scholar
  14. 14.
    M. Hudspeth, D. Li, J. Spatola, W. Chen, and J. Zheng, Text. Res. J., 86, 897 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Singletary, H. Davis, M. K. Ramasubramanian, W. Knoff, and M. Toney, J. Mater. Sci., 35, 573 (2000).CrossRefGoogle Scholar
  16. 16.
    J. Singletary, H. Davis, Y. Song, M. K. Ramasubramanian, and W. Knoff, J. Mater. Sci., 35, 583 (2000).CrossRefGoogle Scholar
  17. 17.
    S. Sockalingam, J. W. Gillespie Jr, and M. Keefe, Int. J. Solids Struct., 51, 2504 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Sockalingam, J. W. Gillespie Jr, and M. Keefe, Int. J. Solids Struct., 67, 297 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Sockalingam, R. Bremble, J. W. Gillespie Jr, and M. Keefe, Compos. Pt. A-Appl. Sci. Manuf., 81, 271 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Sockalingam, D. T. Casem, T. Weerasooriya, and J. W. Gillespie, Dyn. Behav. Mater. Vol. 1. C. Proc. Soc. Exp. Mech., 51 (2018).Google Scholar
  21. 21.
    Z. Guo, D. Casem, M. Hudspeth, X. Nie, J. Sun, and W. Chen, Text. Res. J., 86, 502 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Wollbrett-Blitz, S. Joannès, R. Bruant, C. Le Clerc, M. Romero De La Osa, A. Bunsell, and A. Marcellan, J. Polym. Sci. Pol. Phys., 54, 374 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Sockalingam, J. W. Gillespie Jr, and M. Keefe, Text. Res. J., 88, 483 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Sockalingam, J. W. Gillespie Jr, and M. Keefe, Fibers, 5, 9 (2017).CrossRefGoogle Scholar
  25. 25.
    M. G. Dobb, D. J. Johnson, and B. P. Saville, J. Polym. Sci. Pol. Phys., 15, 2201 (1977).CrossRefGoogle Scholar
  26. 26.
    E. G. Chatzi and J. L. Koenig, Polym.-Plast. Technol., 26, 229 (1987).CrossRefGoogle Scholar
  27. 27.
    M. Grujicic, P. S. Glomski, B. Pandurangan, W. C. Bell, C. F. Yen, and B. A. Cheeseman, J. Mater. Sci., 46, 4787 (2011).CrossRefGoogle Scholar
  28. 28.
    Q. P. McAllister, J. W. Gillespie, and M. R. VanLandingham, J. Mater. Res., 27, 1824 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Panar, P. Avakian, R. C. Blume, K. H. Gardner, T. D. Gierke, and H. H. Yang, J. Polym. Sci. Pol. Phys., 21, 1955 (1983).CrossRefGoogle Scholar
  30. 30.
    S. F. Y. Li, A. J. McGhie, and S. L. Tang, Polymer, 34, 4573 (1993).CrossRefGoogle Scholar
  31. 31.
    Q. P. McAllister, J. W. Gillespie, and M. R. VanLandingham, J. Mater. Sci., 48, 1292 (2013).CrossRefGoogle Scholar
  32. 32.
    S. S. Recchia, A. Pelegri, J. K. Clawson, K. Sahin, I. Chasiotis, and J. Zheng, Proc. ASME Int. Mech. Eng. Congr. Expos., 9, 63 (2013).Google Scholar
  33. 33.
    M. Grujicic, J. S. Snipes, and S. Ramaswami, P. I. Mech. Eng. L-J. Mat., 232, 495 (2018).Google Scholar
  34. 34.
    M. J. Buehler, J. Mech. Behav. Biomed., 1, 59 (2008).CrossRefGoogle Scholar
  35. 35.
    M. Marino and G. Vairo, Comput. Method. Biomec., 17, 11 (2014).CrossRefGoogle Scholar
  36. 36.
    S. M. Pradhan, K. S. Katti, and D. R. Katti, J. Eng. Mech., 140, 454 (2012).CrossRefGoogle Scholar
  37. 37.
    S. E. Szczesny and D. M. Elliott, Acta Biomater., 10, 2582 (2014).CrossRefGoogle Scholar
  38. 38.
    S. E. Szczesny and D. M. Elliott, J. Mech. Behav. Biomed., 40, 325 (2014).CrossRefGoogle Scholar
  39. 39.
    S. E. Szczesny, J. L. Caplan, P. Pedersen, and D. M. Elliott, Sci. Rep., 5, 14649 (2015).CrossRefGoogle Scholar
  40. 40.
    R. Paparcone, S. Cranford, and M. J. Buehler, Acta Mech. Sinica, 26, 977 (2010).CrossRefGoogle Scholar
  41. 41.
    M. Solar and M. J. Buehler, J. Mech. Behav. Biomed., 19, 43 (2013).CrossRefGoogle Scholar
  42. 42.
    S. L. Phoenix and J. Skelton, Text. Res. J., 44, 934 (1974).CrossRefGoogle Scholar
  43. 43.
    B. R. Pauw, M. E. Vigild, K. Mortensen, J. W. Andreasen, E. A. Klop, D. W. Breiby, and O. Bunk, Polymer, 51, 4589 (2010).CrossRefGoogle Scholar
  44. 44.
    S. Sockalingam, S. C. Chowdhury, J. W. Gillespie Jr, and M. Keefe, Text. Res. J., 87, 984 (2017).CrossRefGoogle Scholar
  45. 45.
    L. C. Sawyer, R. T. Chen, M. G. Jamieson, I. H. Musselman, and P. E. Russell, J. Mater. Sci., 28, 225 (1993).CrossRefGoogle Scholar
  46. 46.
    H. D. Espinosa and P. D. Zavattieri, Mech. Mater., 35, 333 (2003).CrossRefGoogle Scholar
  47. 47.
    S. Ghosh and Y. Liu, Int. J. Numer. Meth. Eng., 38, 1361 (1995).CrossRefGoogle Scholar
  48. 48.
    J. Qian and S. Li, J. Eng. Mater.-T. ASME, 133, 011010 (2011).CrossRefGoogle Scholar
  49. 49.
    A. Turon, C. G. Davila, P. P. Camanho, and J. Costa, Eng. Fract. Mech., 74, 1665 (2007).CrossRefGoogle Scholar
  50. 50.
    Getting Started with Abaqus/CAE”, p.13.4, Dassault Systemes, Johnston, RI, USA, 2016.Google Scholar
  51. 51.
    LS-DYNA® Keyword User’s Manual Volume II-Material Models”, pp.719–722, Livermore Software Technology Corporation, Livermore, CA, USA, 2016.Google Scholar
  52. 52.
    S. C. Chowdhury and J. W. Gillespie Jr, Comp. Mater. Sci., 148, 286 (2018).CrossRefGoogle Scholar
  53. 53.
    J. K. Clawson, MS Thesis, University of Illinois at Urbana-Champaign, Illinois, USA, 2013.Google Scholar
  54. 54.
    P. B. McDaniel, S. Sockalingam, J. M. Deitzel, J. W. Gillespie Jr, M. Keefe, T. A. Bogetti, D. T. Casem, and T. Weerasooriya, Compos. Pt. A-Appl. Sci. Manuf., 94, 133 (2017).CrossRefGoogle Scholar
  55. 55.
    P. B. McDaniel, J. M. Deitzel, D. Gregory, T. Polakovic, and J. W. Gillespie, J. Appl. Polym. Sci., 135, 46146 (2018).CrossRefGoogle Scholar
  56. 56.
    S. E. Szczesny, K. L. Fetchko, G. R. Dodge, and D. M. Elliott, J. Orth. Res., 35, 2127 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Jeffrey M. Staniszewski
    • 1
  • Subramani Sockalingam
    • 2
  • Travis A. Bogetti
    • 3
  • John W. GillespieJr.
    • 4
    • 5
    • 6
    • 7
  1. 1.SURVICE Engineering CompanyBelcampUSA
  2. 2.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  3. 3.U.S. Army Research LaboratoryAberdeen Proving GroundUSA
  4. 4.Center for Composite MaterialsUniversity of DelawareNewarkUSA
  5. 5.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA
  6. 6.Department of Mechanical EngineeringUniversity of DelawareNewarkUSA
  7. 7.Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations