Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1194–1206 | Cite as

Influence of N-, P- and Si-based Flame Retardant Mixtures on Flammability, Thermal Behavior and Mechanical Properties of PA6 Composite Fibers

  • Alisa Šehić
  • Jelena Vasiljević
  • Igor Jordanov
  • Andrej Demšar
  • Jožef Medved
  • Ivan Jerman
  • Marija Čolović
  • Fiona Hewitt
  • T. Richard Hull
  • Barbara Simončič
Article
  • 21 Downloads

Abstract

This research investigated the influence of two flame retardant (FR) mixtures consisting melamine cyanurate (MeCy) and aluminum diethylphosphinate (AlPi), and MeCy and sodium aluminosilicate (SASi) at different weight ratios, on the flammability, thermal behavior and mechanical properties of polyamide 6 (PA6) composite yarns produced by meltspinning. The morphological and chemical properties of PA6/FR filaments were investigated by scanning electron microscopy and Fourier-transform infrared spectroscopy, flame retardancy by vertical burning test UL-94, thermal behavior by thermogravimetric and differential scanning calorimetric analyses, and mechanical properties by tensile tests. The results indicate that within the UL 94 V2 rating, the composite yarns differed significantly from each other in their burning and dripping behavior. The incorporation of both mixtures, MeCy+AlPi and MeCy+SASi, into the PA6/FR yarns significantly decreased the afterflame time relative to pristine PA6, confirming a lower production of flammable volatiles. This phenomenon was attributed mainly to MeCy, which caused an immediate extinguishment of the flame after the withdrawal of the igniting flame. Compared to one component MeCy, the incorporation of the MeCy+SASi mixture enhanced the thermooxidative stability of the PA6/FR yarns because of their additive effect at higher concentrations. In contrast, an antagonistic effect was obtained for the MeCy+AlPi mixture, irrespective of the concentration. Since the incorporation of MeCy+SASi did not drastically reduce the tensile properties of filaments, this mixture enables the production of the PA6/MeCy+SASi composite yarns with the enhanced flame retardancy and thermo-oxidative stability.

Keywords

Polyamide 6 Composite filament yarns Flame retardant additive Flammability Thermo-oxidative stability Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Horrocks in “Textiles in Fire Retardant Materials” (A. R. Horrocks and D. Price Eds.), Woodhead Publishing, Cambridge, 2001.CrossRefGoogle Scholar
  2. 2.
    C. L. Beyler and M. M. Hirschler in “SFPE Handbook of Fire Protection Engineering” (D. Nenno Ed.), Society of Fire Protection Engineers, Boston, 1995.Google Scholar
  3. 3.
    S. V. Levchik, E. D. Weil, and M. Lewin, Polym. Int., 45, 532 (1999).CrossRefGoogle Scholar
  4. 4.
    S. V. Levchik and E. D. Weil, Polym. Int., 49, 1033 (2000).CrossRefGoogle Scholar
  5. 5.
    A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, and S. A. Padbury, Polym. Degrad. Stab., 88, 3 (2005).CrossRefGoogle Scholar
  6. 6.
    D. C. O. Marney, L. J. Russell, D. Y. Wu, T. Nguyen, D. Cramm, N. Rigopoulos, N. Wright, and M. Greaves, Polym. Degrad. Stab., 93, 1971 (2008).CrossRefGoogle Scholar
  7. 7.
    V. B. Gupta and V. K. Kothari Eds., “Manufactured Fibre Technology”, Springer Science & Business Media, Dordrecht, 2012.Google Scholar
  8. 8.
    Y. Li, Y. Lin, K. Sha, and R. Xiao, Text. Res. J., 87, 561 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Coquelle, S. Duquesne, M. Casetta, J. Sun, S. Zhang, and S. Bourbigot, Polym. Degrad. Stab., 106, 150 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Xiang, L. Li, W. Chen, S. Yu, B. Sun, and M. Zhu, Prog. Nat. Sci-Mater., 27, 369 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Sun, X. Gu, S. Zhang, M. Coquelle, S. Bourbigot, S. Duquesne, and M. Casetta, Polym. Adv. Technol., 25, 1099 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Dogan and E. Bayramli, Fiber. Polym., 14, 1595 (2013).CrossRefGoogle Scholar
  13. 13.
    A. R. Horrocks, A. Sitpalan, C. Zhou, and B. K. Kandola, Polymers, 8, 288 (2016).CrossRefGoogle Scholar
  14. 14.
    P. Gijsman, R. Steenbakkers, C. Furst, and J. Kersjes, Polym. Degrad. Stab., 78, 219 (2002).CrossRefGoogle Scholar
  15. 15.
    E. D. Weil and S. V. Levchik, “Flame Retardants for Plastics and Textiles: Practical Applications”, Carl Hanser Verlag, Munich, 2016.Google Scholar
  16. 16.
    A. Wirasaputra, L. Zheng, S. Liu, Y. Yuan, and Y. Zhao, Macromol. Mater. Eng., 301, 614 (2016).CrossRefGoogle Scholar
  17. 17.
    H. Demir, E. Arkıs, D. Balkose, and S. Ulku, Polym. Degrad. Stab., 89, 478 (2005).CrossRefGoogle Scholar
  18. 18.
    A. B. Morgan and J. W. Gilman, Fire Mater., 37, 259 (2013).CrossRefGoogle Scholar
  19. 19.
    T. R. Hull, A. Witkowski, and L. Hollingbery, Polym. Degrad. Stab., 96, 1462 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Rusu and E. Rusu, Polym. Compos., 33, 1557 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Tang, L. Qian, Y. Qiu, and N. Sun, J. Appl. Polym. Sci., 131, 40558 (2014).Google Scholar
  22. 22.
    G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Tables and Charts”, 3rd ed., Wiley, Chichester, 2001.Google Scholar
  23. 23.
    E. Onder, N. Sarier, and M. S. Ersoy, Thermochim. Acta, 543, 37 (2012).CrossRefGoogle Scholar
  24. 24.
    Z. Y. Wu, W. Xu, J. K. Xia, Y. C. Liu, Q. X. Wu, and W. J. Xu, Chin. Chem. Lett., 19, 241 (2008).CrossRefGoogle Scholar
  25. 25.
    B. Zhao, L. Chen, J. W. Long, R. K. Jian, and Y. Z. Wang, Ind. Eng. Chem. Res., 52, 17162 (2013).CrossRefGoogle Scholar
  26. 26.
    P. Nieuwenhuyse, V. Bounor-Legaré, and P. Bardollet, Polym. Degrad. Stab., 98, 2635 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Lewin, Polym. Adv. Technol., 12, 3 (2001).CrossRefGoogle Scholar
  28. 28.
    K. P. Pramoda, T. Liu, Z. Liu, C. He, and H. J. Sue, Polym. Degrad. Stab., 81, 47 (2003).CrossRefGoogle Scholar
  29. 29.
    A. Buczko, T. Stelzig, L. Bommer, D. Rentsch, M. Heneczkowski, and S. Gaan, Polym. Degrad. Stab., 107, 158 (2014).CrossRefGoogle Scholar
  30. 30.
    I. Butnaru, M. P. Fernández-Ronco, J. Czech-Polak, M. Heneczkowski, M. Bruma, and S. Gaan, Polymers, 7, 1541 (2015).CrossRefGoogle Scholar
  31. 31.
    U. Braun, B. Schartel, M. A. Fichera, and C. Jager, Polym. Degrad. Stab., 92, 1528 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Dogan and E. Bayramli, Fire Mater., 38, 92 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Coquelle, S. Duquesne, M. Casetta, J. Sun, X. Gu, S. Zhang, and S. Bourbigot, Polymers, 7, 316 (2015).CrossRefGoogle Scholar
  34. 34.
    J. Sun, X. Gu, S. Zhang, M. Coquelle, S. Bourbigot, S. Duquesne, and M. Casetta, Polym. Adv. Technol., 25, 1099 (2014).CrossRefGoogle Scholar
  35. 35.
    U. Braun, H. Bahr, and B. Schartel, Polymers, 10, 443 (2010).Google Scholar
  36. 36.
    Y. Z. Zhang, Y. Zhang, S. W. Liu, A. P. Huang, Z. G. Chi, J. R. Xu, and J. Economy, J. Appl. Polym. Sci., 120, 1885 (2011).CrossRefGoogle Scholar
  37. 37.
    Y. Liu, L. Cui, F. X. Guan, Y. Gao, N. E. Hedin, L. Zhu, and H. Fong, Macromolecules, 40, 6283 (2007).CrossRefGoogle Scholar
  38. 38.
    Y. Chen, Q. Wang, W. Yan, and H. Tang, Polym. Degrad. Stab., 91, 2632 (2006).CrossRefGoogle Scholar
  39. 39.
    Z. Y. Wu, W. Xu, Y. C. Liu, J. K. Xia, Q. X. Wu, and W. J. Xu, J. Appl. Polym. Sci., 113, 2109 (2009).CrossRefGoogle Scholar
  40. 40.
    R. Stolz, T. Vad, G. Seide, T. Gries, K. Klopp, and K. Bender, Tekstilec, 59, 137 (2016).CrossRefGoogle Scholar
  41. 41.
    A. R. Horrocks, B. K. Kandola, G. J. Milnes, A. Sitpalan, and R. L. Hadimani, Polym. Degrad. Stab., 97, 2511 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Alisa Šehić
    • 1
  • Jelena Vasiljević
    • 2
  • Igor Jordanov
    • 3
  • Andrej Demšar
    • 2
  • Jožef Medved
    • 2
  • Ivan Jerman
    • 4
  • Marija Čolović
    • 4
  • Fiona Hewitt
    • 5
  • T. Richard Hull
    • 5
  • Barbara Simončič
    • 2
  1. 1.AquafilSLO d. o. o.LjubljanaSlovenia
  2. 2.University of LjubljanaFaculty of Natural Sciences and EngineeringLjubljanaSlovenia
  3. 3.Ss. Cyril and Methodius UniversityFaculty of Technology and MetallurgySkopjeMacedonia
  4. 4.National Institute of ChemistryLjubljanaSlovenia
  5. 5.Centre for Fire and Hazards ScienceUniversity of Central LancashirePrestonUnited Kingdom

Personalised recommendations