Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1175–1183 | Cite as

Water-resistant Lignin/Poly(vinyl alcohol) Blend Fibers for Removal of Hexavalent Chromium

  • Hyo Won Kwak
  • Heechang Woo
  • Eui Hwa Kim
  • Ki Hoon Lee
Article
  • 56 Downloads

Abstract

Lignin is the second most abundant renewable biomass-derived natural resource that has been used to replace traditional petrochemical-based materials. However, fabricating the lignin component into the various forms required for practical application is still challenging. In this work, we fabricated water-resistant lignin/poly(vinyl alcohol) (PVA) blend fibers by wet spinning and glutaraldehyde crosslinking methods. The effect of the lignin/PVA blend ratio and glutaraldehyde crosslinking process on the physicochemical properties of wet-spun lignin/PVA blend fibers were studied using maximum draw ratios, hydrolytic degradation profiles, and mechanical properties. Furthermore, the hexavalent chromium [Cr(VI)] removal behavior of lignin/PVA blend fibers was investigated according to the effect of pH, initial Cr(VI) concentration, and contact time. The wet-spun lignin/PVA blend fiber achieved excellent water stability through glutaraldehyde crosslinking and exhibited notable Cr(VI) adsorption capacity (350.87 mg/g) and good regeneration ability. These findings demonstrate that glutaraldehyde-crosslinked lignin/PVA blend fibers could be promising adsorbents for the remediation of heavy metal species containing textile wastewater.

Keywords

Lignin Poly(vinyl alcohol) Fibers Hexavalent chromium Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ghorbani and H. Eisazadeh, Compos. Pt. B-Eng., 45, 1 (2013).CrossRefGoogle Scholar
  2. 2.
    X. Liang, X. Ning, G. Chen, M. Lin, J. Liu, and Y. Wang, Ecotoxicol. Environ. Saf., 98, 128 (2013).CrossRefPubMedGoogle Scholar
  3. 3.
    C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, J. Environ. Manage., 182, 351 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    Z. Aksu and E. Balibek, J. Environ. Manage., 91, 1546 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    A. Ghosh, M. G. Dastidar, and T. R. Sreekrishnan, Int. Biodeterior. Biodegrad., 119, 448 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Pradhan, L. B. Sukla, M. Sawyer, and P. K. S. M. Rahman, J. Ind. Eng. Chem., 55, 1 (2017).CrossRefGoogle Scholar
  7. 7.
    P. Biswas, A. K. Karn, P. Balasubramanian, and P. G. Kale, Biosens. Bioelectron., 94, 589 (2017).CrossRefPubMedGoogle Scholar
  8. 8.
    Q. Sun, H. Li, S. Zheng, and Z. Sun, Appl. Surf. Sci., 311, 369 (2014).CrossRefGoogle Scholar
  9. 9.
    R. K. Gautam, A. Mudhoo, G. Lofrano, and M. C. Chattopadhyaya, J. Environ. Chem. Eng., 2, 239 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Z. Kyzas and D. N. Bikiaris, Mar Drugs, 13, 312 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    H. W. Kwak, Y. Kim, N. K. Yun, and K. H. Lee, Macromol. Res., 22, 788 (2014).CrossRefGoogle Scholar
  12. 12.
    X. Guo, S. Zhang, and X. Shan, J. Hazard. Mater., 151, 134 (2008).CrossRefPubMedGoogle Scholar
  13. 13.
    D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, and S. Jeelani, J. Mater. Res. Technol., 4, 26 (2015).CrossRefGoogle Scholar
  14. 14.
    Q. Zhao and R. A. Dixon, Trends Plant Sci., 16, 227 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    N.-E. El Mansouri and J. Salvadó, Ind. Crops Prod., 26, 116 (2007).CrossRefGoogle Scholar
  16. 16.
    X. Guo, S. Zhang, and X. Shan, J. Hazard. Mater., 151, 134 (2008).CrossRefPubMedGoogle Scholar
  17. 17.
    Y. Wu, S. Zhang, X. Guo, and H. Huang, Bioresour. Technol., 99, 7709 (2008).CrossRefPubMedGoogle Scholar
  18. 18.
    M. S. Atas, S. Dursun, H. Akyildiz, M. Citir, C. T. Yavuz, and M. S. Yavuz, RSC Adv., 7, 25969 (2017).CrossRefGoogle Scholar
  19. 19.
    X. Yue, F. Jiang, D. Zhang, H. Lin, and Y. Chen, Fiber. Polym., 18, 2102 (2017).CrossRefGoogle Scholar
  20. 20.
    Z. Cai, X. Song, Q. Zhang, and T. Zhai, Fiber. Polym., 18, 502 (2017).CrossRefGoogle Scholar
  21. 21.
    V. N. Tirtom, A. Dinçer, S. Becerik, T. Aydemir, and A. Çelik, Chem. Eng. J., 197, 379 (2012).CrossRefGoogle Scholar
  22. 22.
    B. Zhang, Y. Jiang, and J. Han, Fiber. Polym., 18, 1754 (2017).CrossRefGoogle Scholar
  23. 23.
    X. Xu, B. Bai, H. Wang, and Y. Suo, RSC Adv., 7, 6636 (2017).CrossRefGoogle Scholar
  24. 24.
    B. K. Tan, Y. C. Ching, S. C. Poh, L. C. Abdullah, and S. N. Gan, Polymers, 7, 2205 (2015).CrossRefGoogle Scholar
  25. 25.
    H. Yun, H. C. Woo, and K. H. Lee, Text. Sci. Eng., 53, 391 (2016).CrossRefGoogle Scholar
  26. 26.
    R. A. Lee, C. Bédard, V. Berberi, R. Beauchet, and J.-M. Lavoie, Bioresour. Technol., 144, 658 (2013).CrossRefPubMedGoogle Scholar
  27. 27.
    H. W. Kwak, M. Shin, H. Yun, and K. H. Lee, Int. J. Mol. Sci., 17, 1466 (2016).CrossRefPubMedCentralGoogle Scholar
  28. 28.
    D. E. Chung and I. C. Um, Fiber. Polym., 15, 153 (2014).CrossRefGoogle Scholar
  29. 29.
    C. Lu, C. Blackwell, Q. Ren, and E. Ford, ACS Sustain. Chem. Eng., 5, 2949 (2017).CrossRefGoogle Scholar
  30. 30.
    G. Fang, Z. Zheng, J. Yao, M. Chen, Y. Tang, J. Zhong, Z. Qi, Z. Li, Z. Shao, and X. Chen, J. Mater. Chem. B, 3, 3940 (2015).CrossRefGoogle Scholar
  31. 31.
    M. Richard-Lacroix and C. Pellerin, Macromolecules, 48, 4511 (2015).CrossRefGoogle Scholar
  32. 32.
    Y. Zhu, C. Wu, Y. Zhang, and J. Zhao, Fiber. Polym., 16, 345 (2015).CrossRefGoogle Scholar
  33. 33.
    F. Mai, W. Tu, E. Bilotti, and T. Peijs, Fibers, 3, 523 (2015).CrossRefGoogle Scholar
  34. 34.
    R. Jan, A. Habib, M. A. Akram, T.-H. Zia, and A. N. Khan, Nanoscale Res. Lett., 11, 377 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    I. Ullah, R. Nadeem, M. Iqbal, and Q. Manzoor, Ecol. Eng., 60, 99 (2013).CrossRefGoogle Scholar
  36. 36.
    X. Sun, L. Yang, Q. Li, J. Zhao, X. Li, X. Wang, and H. Liu, Chem. Eng. J., 241, 175 (2014).CrossRefGoogle Scholar
  37. 37.
    Y. Yan, Q. An, Z. Xiao, W. Zheng, and S. Zhai, Chem. Eng. J., 313, 475 (2017).CrossRefGoogle Scholar
  38. 38.
    M. S. Samuel, M. E. A. Abigail, and C. Ramalingam, PLoS One, 10, 1 (2015).CrossRefGoogle Scholar
  39. 39.
    M. El-Sayed and A. A. Nada, J. Water Process Eng., 16, 296 (2017).CrossRefGoogle Scholar
  40. 40.
    M. K. Gagrai, C. Das, and A. K. Golder, Chemosphere, 93, 1366 (2013).CrossRefPubMedGoogle Scholar
  41. 41.
    R. M. Hlihor, H. Figueiredo, T. Tavares, and M. Gavrilescu, Process Saf. Environ. Prot., 108, 44 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Hyo Won Kwak
    • 1
  • Heechang Woo
    • 2
  • Eui Hwa Kim
    • 3
  • Ki Hoon Lee
    • 2
    • 4
    • 5
  1. 1.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUnited Kingdom
  2. 2.Department of Biosystems & Biomaterials Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Textile Materials EngineeringShinhan UniversityDongducheon, GyeonggiKorea
  4. 4.Center for Food and BioconvergenceSeoul National UniversitySeoulKorea
  5. 5.Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea

Personalised recommendations