Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1359–1362 | Cite as

Liquid Crystallinity of p-Aramid/Multi-walled Carbon Nanotube Composites

  • Chae Bin Kim
  • Yong-Mun Choi
  • Hyun Ju Kim
  • Haena Lee
  • Nam-Ho You
  • Jae Kwan Lee
  • Bon-Cheol Ku
  • Munju Goh
Communication
  • 55 Downloads

Abstract

A systematic study regarding the liquid crystallinity of p-Aramid and MWCNTs composite at various p-Aramid and MWCNTs concentrations in sulphuric acid was investigated and optimized by solution viscosity measurement and opalescence observation. We observed a merged liquid crystalline phase consisting of both p-Aramid and MWCNTs, and we believe this is the first study to report this combined liquid crystalline phase in one suspension. In addition to providing fundamental insights, we envision this study could be useful to those developing a strong, light, and high-performance polymeric composite fibers.

Keywords

Liquid crystal Composite Fiber p-Aramid Carbon nanotube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Offringa, “41th International Conference on Automated Composites (ICAC)”, pp.161–169, Nottingham, UK, 1995.Google Scholar
  2. 2.
    G. Marsh, Mater. Today, 6, 36 (2003).CrossRefGoogle Scholar
  3. 3.
    L. C. Hollaway, Construct. Built. Mater., 17, 365 (2003).CrossRefGoogle Scholar
  4. 4.
    P. K. Mallick, “Fiber Reinforced Composites: Materials, Manufacturing and Design”, 3rd ed., New York: CRC Press, 2008.Google Scholar
  5. 5.
    P. Brondsted, H. Lilholt, and A. Lystrup, Annu. Rev. Mater. Res., 35, 505 (2005).CrossRefGoogle Scholar
  6. 6.
    V. C. Li, J. Appl. Polym. Sci., 83, 660 (2002).CrossRefGoogle Scholar
  7. 7.
    D. Tanner, J. A. Fitzgerald, and B. R. Phillips, Angew. Chem. Int. Ed., 28, 649 (1989).CrossRefGoogle Scholar
  8. 8.
    J. Li and Y. C. Xia, Fiber. Polym., 10, 519 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Peng, Y. Wan, D. Ren, Q. Zeng, and L. Tang, Fiber. Polym., 15, 1242 (2014).CrossRefGoogle Scholar
  10. 10.
    J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon, 44, 1624 (2006).CrossRefGoogle Scholar
  11. 11.
    A. Chatterjee and B. L. Deopura, Fiber. Polym., 3, 134 (2002).CrossRefGoogle Scholar
  12. 12.
    I. O'Connor, H. Hayden, J. N. Coleman, and Y. K. Gun’ko, Small, 5, 466 (2009).CrossRefPubMedGoogle Scholar
  13. 13.
    B. Alemán, V. Reguero, B. Mas, and J. J. Vilatela, ACS Nano, 9, 7392 (2015).CrossRefPubMedGoogle Scholar
  14. 14.
    L. Bokobza, Polymer, 48, 4907 (2007).CrossRefGoogle Scholar
  15. 15.
    V. A. Davis, L. M. Ericson, A. N. G. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. A. Longoria, S. Ramesh, R. K. Saini, C. Kittrell, W. E. Billups, W. W. Adams, R. H. Hauge, R. E. Smalley, and M. Pasquali, Macromolecules, 37, 154 (2004).CrossRefGoogle Scholar
  16. 16.
    J. Fan, J. Wang, Z. Shi, S. Yu, and J. Yin, Mater. Chem. Phys., 141, 861 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Chae Bin Kim
    • 1
  • Yong-Mun Choi
    • 1
  • Hyun Ju Kim
    • 1
    • 2
  • Haena Lee
    • 1
    • 3
  • Nam-Ho You
    • 1
  • Jae Kwan Lee
    • 2
  • Bon-Cheol Ku
    • 1
  • Munju Goh
    • 1
  1. 1.Institute of Advanced Composite MaterialsKorea Institute of Science and Technology (KIST)WanjuKorea
  2. 2.Department of Carbon MaterialsChosun UniversityGwangjuKorea
  3. 3.Department of Organic Materials EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations