Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1386–1394 | Cite as

Tertiary Amination/Hydroxypropylsulfonation of Cornstarch to Improve the Adhesion-to-Fibers and Film Properties for Warp Sizing

  • Wei Li
  • Zhenzhen Xu
  • Zongqian Wang
  • Changlong Li
  • Quan Feng
  • Yanan Zhu
Article
  • 21 Downloads

Abstract

To investigate the effects of tertiary amination/hydroxypropylsulfonation on the adhesion-to-fibers and film properties of corn starch for warp sizing, a series of tertiary aminated and hydroxypropylsulfonated corn starch (TAHPSS) samples were prepared by the tertiary amination and hydroxypropylsulfonation of acid-hydrolyzed corn starch (AHS) with 2- dimethylaminoethyl chloride hydrochloride (DMC-HCl) and 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt (CHPS-Na) simultaneously. The adhesion was evaluated by measuring the bonding force of starch to the fibers. The film properties were investigated in terms of tensile strength, breaking elongation, degree of crystallinity, and moisture regain. The results showed that tertiary amination/hydroxypropylsulfonation was able to increase bonding forces of starch to cotton and polyester fibers, enhance breaking elongation and moisture regain of the starch film and to decrease the tensile strength and degree of crystallinity of the film, thereby improving the adhesion and reducing film brittleness. Increasing the level of tertiary amination/hydroxypropylsulfonation was favorable for gradually improving the adhesion and decreasing the brittleness. The TAHPSS showed potential for use in cotton warp sizing.

Keywords

Cornstarch Tertiary amination/hydroxypropylsulfonation Tertiary aminated and hydroxypropylsulfonated corn starch Adhesion-to-fibers Film properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Park, W. K. Lee, C. Y. Park, W. J. Cho, and C. S. Ha, J. Mater. Sci., 38, 909 (2003).CrossRefGoogle Scholar
  2. 2.
    M. J. Prakash, V. Sivakumar, R. Sridhar, and I. V. Prince, Ind. Crop. Prod., 42, 159 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Mali, M. V. E. Grossmann, M. A. García, M. N. Martino, and N. E. Zaritzky, Food Hydrocolloid., 19, 157 (2005).CrossRefGoogle Scholar
  4. 4.
    W. Li, Z. Z. Xu, L. Y. Zhang, X. Wang, and A. F. Wei, J. Polym. Mater., 33, 431 (2016).Google Scholar
  5. 5.
    W. Li and Z. F. Zhu, J. Adhes., 92, 257 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Q. Shen, Z. F. Zhu, and F. D. Liu, Carbohydr. Polym., 138, 280 (2016).CrossRefPubMedGoogle Scholar
  7. 7.
    W. Li and Z. F. Zhu, Indian J. Fibre Text., 39, 314 (2014).Google Scholar
  8. 8.
    Z. F. Zhu, “Chemistry in Textile Engineering”, pp.179–217, Donghua University Press Co. Ltd., Shanghai, 2010.Google Scholar
  9. 9.
    Z. F. Zhu, M. Wang, and W. Li, Fiber. Polym., 16, 1890 (2015).CrossRefGoogle Scholar
  10. 10.
    B. K. Behera, R. Gupta, and R. Mishra, Fiber. Polym., 9, 481 (2008).CrossRefGoogle Scholar
  11. 11.
    Z. F. Zhu and M. Wang, J. Adhes. Sci. Technol., 28, 935 (2014).CrossRefGoogle Scholar
  12. 12.
    Z. F. Zhu and S. Q. Shen, J. Adhes. Sci. Technol., 28, 1695 (2014).CrossRefGoogle Scholar
  13. 13.
    P. V. Seydel and J. R. Hunt, “Textile Warp Sizing”, pp.5–16, 247–267, Phoenix Printing Inc., Atlanta, 1981.Google Scholar
  14. 14.
    W. Li, W. Z. Xu, A. F. Wei, Z. Z. Xu, and C. H. Zhang, Fiber. Polym., 17, 1589 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Jansson and F. Thuvander, Carbohydr. Polym., 56, 499 (2004).CrossRefGoogle Scholar
  16. 16.
    Z. Q. Liu, Y. Li, F. J. Cui, L. F. Ping, J. N. Song, Y. Ravee, L. Q. Jin, Y. P. Xue, J. M. Xu, G. Li, Y. J. Wang, and Y. G. Zheng, J. Agric. Food Chem., 56, 11499 (2008).CrossRefPubMedGoogle Scholar
  17. 17.
    Z. F. Zhu and Y. Lei, J. Adhes. Sci. Technol., 29, 116 (2015).CrossRefGoogle Scholar
  18. 18.
    Z. F. Zhu and P. H. Chen, J. Appl. Polym. Sci., 106, 2763 (2007).CrossRefGoogle Scholar
  19. 19.
    J. O. Akingbala, B. A. Olunlade, and R. Khan, Starch-Stärke, 67, 561 (2015).CrossRefGoogle Scholar
  20. 20.
    H. A. A. El-Rehim, and D. A. Diaa, Carbohydr. Polym., 87, 1905 (2012).CrossRefGoogle Scholar
  21. 21.
    C. H. Zhang, D. S. Xu, and Z. F. Zhu, Fiber. Polym., 15, 2319 (2014).CrossRefGoogle Scholar
  22. 22.
    Z. F. Zhu, L. Y. Zhang, and X. M. Feng, Starch-Stärke, 68, 742 (2016).CrossRefGoogle Scholar
  23. 23.
    Y. B. Wang and W. L. Xie, Carbohydr. Polym., 80, 1172 (2010).CrossRefGoogle Scholar
  24. 24.
    J. X. Xie, “Infrared Spectrum”, pp.337–346, Science Press, Beijing, 1987.Google Scholar
  25. 25.
    J. Singh, L. Kaur, and O. J. Mccarthy, Food Hydrocolloid., 21, 1 (2007).CrossRefGoogle Scholar
  26. 26.
    S. Wang and L. Copeland, Crit. Rev. Food Sci., 55, 1081 (2015).CrossRefGoogle Scholar
  27. 27.
    A. Rindlav-Westling, M. Stading, and P. Gatenholm, Biomacromolecules, 3, 84 (2002).CrossRefPubMedGoogle Scholar
  28. 28.
    Z. Liu and J. H. Han, J. Food Sci., 70, E31 (2005).Google Scholar
  29. 29.
    S. H. Wu, “Polymer Interface and Adhesion”, pp.359–448, Marcel Dekker, New York, 1982.Google Scholar
  30. 30.
    J. J. Bikerman and D. W. Marshall, J. Appl. Polym. Sci., 7, 1031 (1963).CrossRefGoogle Scholar
  31. 31.
    R. M. S. M. Thiré, R. A. Simão, and C. T. Andrade, Carbohydr. Polym., 54, 149 (2003).CrossRefGoogle Scholar
  32. 32.
    G. F. Hu, J. Y. Chen, and J. P. Gao, Carbohydr. Polym., 76, 291 (2009).CrossRefGoogle Scholar
  33. 33.
    H. G. Bader and D. Göritz, Starch-Stärke, 46, 435 (1994).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Wei Li
    • 1
  • Zhenzhen Xu
    • 1
  • Zongqian Wang
    • 1
  • Changlong Li
    • 1
  • Quan Feng
    • 1
  • Yanan Zhu
    • 2
  1. 1.College of Textiles and GarmentsAnhui Polytechnic UniversityWuhuChina
  2. 2.Key Laboratory of Eco-textiles, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations