Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1576–1583 | Cite as

Improvement of Anti-wrinkle Properties of Cotton Fabrics Treated with Additives of Neutral Salts

  • Huifang Xiao
  • Kelu Yan
  • Bolin JiEmail author
Article
  • 68 Downloads

Abstract

By employing 1,2,3,4-butanetetracarboxylic acid (BTCA) as the finishing agent, SHP as the catalyst and neutral salts NaCl and Na2SO4 as the additives, anti-wrinkle finish of cotton fabrics was carried out here. According to the Donnan equilibrium model and the actions of neutral salts in dyeing process of cellulosic fabrics, NaCl and Na2SO4 should both promote the adsorption of BTCA anions onto the surface of fibers and diffusion into the interior of fibers. Consequently, BTCA would crosslink the interior molecular chains of cellulose, improving the anti-wrinkle properties of treated fabrics. In fact, experimental results confirmed the hypothesis that the two additives of neutral salts indeed both improved wrinkle recovery angle (WRA) of the treated fabrics and the optimal molar ratio of NaCl or Na2SO4 to BTCA was 0.2:1 or 0.3:1, respectively. The neutral salts reduced the dosage of BTCA without decreasing WRA, reducing the manufacturing cost. Besides, the fabrics treated with neutral salts presented good durability. Furthermore, thermogravimetric analysis (TGA), Xray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses revealed that neutral salts could catalyze the formation of BTCA anhydride by decreasing hydrogen-bond interactions between BTCA molecules.

Keywords

Anti-wrinkle finish BTCA Additives Neutral salts Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Dehabadi, H. J. Buschmann, and J. S. Gutmann, Text. Res. J., 83, 1974 (2013).CrossRefGoogle Scholar
  2. 2.
    C. Zhao and G. Sun, Ind. Eng. Chem. Res., 54, 10553 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. K. Lam, C. W. Kan, and C. W. M. Yuen, Fiber. Polym., 11, 551 (2010).CrossRefGoogle Scholar
  4. 4.
    U. Sewekow, Text. Chem. Color., 28, 21 (1996).Google Scholar
  5. 5.
    W. Wei and C. Q. Yang, Text. Chem. Color., 32, 53 (2000).Google Scholar
  6. 6.
    Jr. J. G. Frick and Jr. R. J. Harper, Text. Res. J., 52, 141 (1982).CrossRefGoogle Scholar
  7. 7.
    K. J. Yoon, J. H. Woo, and Y. S. Seo, Fiber. Polym., 4, 182 (2003).CrossRefGoogle Scholar
  8. 8.
    Y. H. Yu, E. S. Lee, and E. S. Bang, Fiber. Polym., 9, 715 (2008).CrossRefGoogle Scholar
  9. 9.
    E. S. Lee and S. I. Kim, Fiber. Polym., 5, 230 (2004).CrossRefGoogle Scholar
  10. 10.
    P. Tang, B. Ji, and G. Sun, Carbohydr. Polym., 147, 139 (2016).CrossRefPubMedGoogle Scholar
  11. 11.
    W. Sricharussin, W. Ryo-Aree, W. Intasen, and S. Poungraksakirt, Text. Res. J., 74, 75 (2004).CrossRefGoogle Scholar
  12. 12.
    B. K. Andrews, N. M. Morris, D. J. Donaldson, and C. M. Welch, U. S. Patents, 5221285 (1993).Google Scholar
  13. 13.
    C. Q. Yang and X. L. Wang, Text. Res. J., 66, 595 (1996).CrossRefGoogle Scholar
  14. 14.
    B. H. Kim, J. Jang, and S. W. Ko, Fiber. Polym., 1, 116 (2000).CrossRefGoogle Scholar
  15. 15.
    K. J. Yoon, J. H. Woo, and Y. S. Seo, Fiber. Polym., 4, 182 (2003).CrossRefGoogle Scholar
  16. 16.
    N. Bhattacharyya, B. A. Doshi, and A. S. Sahasrabudhe, Text. Chem. Color., 31, 33 (1999).Google Scholar
  17. 17.
    W. Sricharussin, W. Ryo-Aree, W. Intasen, and S. Poungraksakirt, Text. Res. J., 74, 475 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Johnson, “The Theory of Coloration of Textiles”, 2nd ed., pp.223–224, Society of Dyes and Colourists, Bradford, 1989.Google Scholar
  19. 19.
    B. Yu, W. Wang, and Z. Cai, J. Text. Inst., 105, 321 (2014).CrossRefGoogle Scholar
  20. 20.
    C. Q. Yang, Text. Res. J., 63, 420 (1993).CrossRefGoogle Scholar
  21. 21.
    B. Ji, P. Tang, K. Yan, and G. Sun, Carbohydr. Polym., 132, 228 (2015).CrossRefPubMedGoogle Scholar
  22. 22.
    P. J. Basser and A. J. Grodzinsky, Biophys. Chem., 46, 57 (1993).CrossRefPubMedGoogle Scholar
  23. 23.
    J. T. Overbeek, Prog. Biophys. Biophys. Chem., 6, 57 (1956).CrossRefGoogle Scholar
  24. 24.
    R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, and A. van der Wal, Water Res., 47, 1941 (2013).CrossRefPubMedGoogle Scholar
  25. 25.
    N. M. Morris, E. A. Catalano, and B. A. K. Andrews, Cellulose, 2, 31 (1995).Google Scholar
  26. 26.
    I. S. Kang, C. Q. Yang, W. S. Wei, and G. C. Lickfield, Text. Res. J., 68, 865 (1998).CrossRefGoogle Scholar
  27. 27.
    C. E. Morris, N. M. Morris, and B. J. Trask-Morrell, Ind. Eng. Chem. Res., 35, 950 (1996).CrossRefGoogle Scholar
  28. 28.
    C. Q. Yang, Text. Res. J., 61, 433 (1991).CrossRefGoogle Scholar
  29. 29.
    Y. Ning, “Structural Identification of Organic Compounds and Organic Spectroscopy”, 2nd ed., pp.490–494, Science Press, Beijing, 2000.Google Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPR China
  2. 2.National Engineering Research Center for Dyeing and Finishing of TextilesDonghua UniversityShanghaiPR China

Personalised recommendations