Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1166–1174 | Cite as

Novel Biodegradable Potato Starch-based Compositions as Candidates in Packaging Industry, Safe for Marine Environment

  • Helena Janik
  • Maciej Sienkiewicz
  • Agnieszka Przybytek
  • Agnieszka Guzman
  • Justyna Kucinska-Lipka
  • Alicja Kosakowska
Article
  • 12 Downloads

Abstract

About 70 % of our planet’s surface is covered by seas and oceans to which even 10 million tons of waste go every year. It makes these places the largest global landfills, containing up to 90 % of plastic waste. In this article we present the results of research on novel starch-based compositions expected to be more safe for the marine environment. For these purpose biopolymers such as, thermoplastic starch (TPS), polylactide (PLA) and poly(vinyl alcohol) (PVA) were reactive extruded and formed into films by high-pressure compressing. Their physical, thermal and mechanical properties were examined. Compositions were tested in seawater collected from the Gulf of Gdansk Baltic Sea. The obtained samples were completely disintegrated after 3 weeks. BOD test in the presence of bacteria pseudomonas augerinosa confirmed biodegradation of prepared compositions. The impact assessment of received materials on the marine environment was also evaluated by degradation tests in the presence of Phaeodactylum tricornutum diatom. Cells growth of Phaeodactylum tricornutum diatoms was only slightly inhibited in the presence of TPS/PLA/PVA compositions.

Keywords

Packaging bio-polymers Biodegradation Marine environment Microorganisms Plastic pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Siracusa, P. Rocculi, S. Romani, and M. D. Rosa, Trends Food Sci. Technol., 19, 634 (2008).CrossRefGoogle Scholar
  2. 2.
    F. Langmaier, P. Mokrejs, K. Kolomaznik, and M. Mladek, Waste Manag., 28, 549 (2008).CrossRefGoogle Scholar
  3. 3.
    L. M. Rios, P. R. Jones, C. Moore, and U. V. Narayan, J. Environ. Monit., 12, 2226 (2010).CrossRefGoogle Scholar
  4. 4.
    M. R. Gregory, Philos. Trans. R. Soc. B Biol. Sci., 364, 2013 (2009).CrossRefGoogle Scholar
  5. 5.
    European Bioplastics, Bioplastics Facts and Figures, 2017, Available from: https://www.european-bioplastics.org
  6. 6.
    Nova-Institute GmbH, Bio-based Polymers in the World. Available from: http://bio-based.eu/market_study/media/files/13-06-21MSBiopolymersExcerpt.pdf
  7. 7.
    PlasticsEurope, Plastics–the Facts 2016, 2016. Available from: https://www.plasticseurope.org
  8. 8.
    United Nations Environment Programme, Marine Litter An Analytical Overview, 2005, Available from: http://www.cep.unep.org
  9. 9.
    G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S. E. Selke, and S. P. Singh, Macromol. Biosci., 7, 255 (2007).CrossRefGoogle Scholar
  10. 10.
    D. R. Lu, C. M. Xiao, and S. J. Xu, Express Polym. Lett., 3, 366 (2009).CrossRefGoogle Scholar
  11. 11.
    N. Wang, J. Yu, and X. Ma, Polym. Int., 56, 1440 (2007).CrossRefGoogle Scholar
  12. 12.
    J. Muller, C. González-Martínez, and A. Chiralt, Materials (Basel), 10, 952 (2017).CrossRefGoogle Scholar
  13. 13.
    A. M. Guzman, H. Z. Janik, M. Mastalerz, and A. M. Kosakowska, Polish J. Chem. Technol., 13, 57 (2011).CrossRefGoogle Scholar
  14. 14.
    N.-C. Pauli, J. S. Petermann, C. Lott, and M. Weber, R. Soc. Open Sci., 4, 170549 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Rutkowska, A. Heimowska, K. Krasowska, and H. Janik, Polish J. Environ. Stud., 11, 267 (2002).Google Scholar
  16. 16.
    P. Franz, Verification Report: Aerobic Biodegradation of Third Generation Mater Bi under Marine Condition, 2015, Available from: https://ec.europa.eu/commission/index_en Google Scholar
  17. 17.
    S. Tripathi, G. K. Mehrotra, and P. K. Dutta, Carbohydr. Polym., 79, 711 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Cinelli, E. Chiellini, J. W. Lawton, and S. H. Imam, Polym. Degrad. Stabil., 91, 1147 (2006).CrossRefGoogle Scholar
  19. 19.
    E. E. Tănase, M. E. Popa, M. Râpă, and O. Popa, Rom. Biotechnol. Lett., 20, 10306 (2015).Google Scholar
  20. 20.
    E. Chiellini, A. Corti, S. D’Antone, and R. Solaro, Prog. Polym. Sci., 28, 963 (2003).CrossRefGoogle Scholar
  21. 21.
    R. Solaro, A. Corti, and E. Chiellini, Polym. Adv. Technol., 11, 873 (2000).CrossRefGoogle Scholar
  22. 22.
    A. Guzman, N. Gnutek, and H. Janik, Chem. Chem. Technol., 5, 115 (2011).Google Scholar
  23. 23.
    L. Xiao, B. Wang, G. Yang, and M. Gauthier, Biomed. Sci. Eng. Technol., 249 (2012).Google Scholar
  24. 24.
    J. Wang, Z. Tan, J. Peng, Q. Qiu, and M. Li, Mar. Environ. Res., 113, 7 (2016).CrossRefGoogle Scholar
  25. 25.
    C. G. Avio, S. Gorbi, and F. Regoli, Mar. Environ. Res., 128, 2 (2017).CrossRefGoogle Scholar
  26. 26.
    C. J. Moore, Environ. Res., 108, 131 (2008).CrossRefGoogle Scholar
  27. 27.
    T. Artham, M. Sudhakar, R. Venkatesan, C. Madhavan Nair, K. V. G. K. Murty, and M. Doble, Int. Biodeterior. Biodegrad., 63, 884 (2009).CrossRefGoogle Scholar
  28. 28.
    T. O’Brine and R. C. Thompson, Mar. Pollut. Bull., 60, 2279 (2010).CrossRefGoogle Scholar
  29. 29.
    M. Tosin, M. Weber, M. Siotto, C. Lott, and F. D. Innocenti, Front. Microbiol., 3, 1 (2012).CrossRefGoogle Scholar
  30. 30.
    B. Gewert, M. M. Plassmann, and M. MacLeod, Environ. Sci. Process. Impacts, 17, 1513 (2015).CrossRefGoogle Scholar
  31. 31.
    A. L. Andrady, Mar. Pollut. Bull., 62, 1596 (2011).CrossRefGoogle Scholar
  32. 32.
    S. L. Wright, R. C. Thompson, and T. S. Galloway, Environ. Pollut., 178, 483 (2013).CrossRefGoogle Scholar
  33. 33.
    C.-S. Wu and H.-T. Liao, Polymer (Guildf), 46, 10017 (2005).CrossRefGoogle Scholar
  34. 34.
    M. R. Almeida, R. S. Alves, L. B. L. R. Nascimbem, R. Stephani, R. J. Poppi, and L. F. C. De Oliveira, Anal. Bioanal. Chem., 397, 2693 (2010).CrossRefGoogle Scholar
  35. 35.
    A. Heimowska, K. Krasowska, and M. Rutkowska, in 12th Annu. Gen. Assem. IAMU, pp.153–163 (2012).Google Scholar
  36. 36.
    L. Xiao, B. Wang, G. Yang, and M. Gauthier in “Biomedical Science, Engineering and Technology” (D. N. Ghista Ed.), pp.247-283, InTech, China, 2012.Google Scholar
  37. 37.
    J. R. Nunes de Macedo and D. dos Santos Rosa, Key Eng. Mater., 668, 54 (2016).CrossRefGoogle Scholar
  38. 38.
    I. Moura, A. V. Machado, F. M. Duarte, and R. Nogueira, J. Appl. Polym. Sci., 119, 3338 (2011).CrossRefGoogle Scholar
  39. 39.
    N. Wang, J. Yu, P. R. Chang, and X. Ma, Carbohydr. Polym., 71, 109 (2008).CrossRefGoogle Scholar
  40. 40.
    M. Akrami, I. Ghasemi, H. Azizi, M. Karrabi, and M. Seyedabadi, Carbohydr. Polym., 144, 254 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Helena Janik
    • 1
  • Maciej Sienkiewicz
    • 1
  • Agnieszka Przybytek
    • 1
  • Agnieszka Guzman
    • 1
  • Justyna Kucinska-Lipka
    • 1
  • Alicja Kosakowska
    • 2
  1. 1.Chemical Faculty, Polymer Technology DepartmentGdansk University of Technology (GUT)GdanskPoland
  2. 2.Polish Academy of SciencesInstitute of OceanologySopotPoland

Personalised recommendations