Fibers and Polymers

, Volume 19, Issue 7, pp 1500–1512 | Cite as

Inherently Flame Retardant Nylon 6 Nanocomposite Fibers

  • Hao Wu
  • Mourad KrifaEmail author
  • Joseph H. Koo


In this study, inherently flame retardant nanocomposite nylon 6 fibers infused with nanoclay and intumescent additives were compounded and melt-spun. Two approaches were adopted to mitigate the loss of mechanical properties typically observed nanocomposite fiber systems: (a) additive particle size reduction; and (b) elastomer toughening of the nanocomposite system. As a result, the ductility of the FR nanocomposite formulations was improved significantly. Structural and morphological characterization of the melt-spun fibers using TEM and XRD demonstrated good dispersion of the additives and exfoliation of the nanoclay platelets. Microscale Combustion Calorimetry analysis demonstrated effective reduction of heat release capacity and thus significant enhancement of flame retardant performance of the compounded fibers.


Flame retardant fibers Polyamide 6 Combustion Polymer nanocomposite Non-drip nylon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, and S. A. Padbury, Polym. Degrad. Stabil., 88, 3 (2005).CrossRefGoogle Scholar
  2. 2.
    E. D. Weil and S. V. Levchik, J. Fire Sci., 26, 243 (2008).CrossRefGoogle Scholar
  3. 3.
    A. R. Horrocks, Polym. Degrad. Stabil., 96, 377 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Bourbigot, C. Jama, M. Le Bras, R. Delobel, O. Dessaux, and P. Goudmand, Polym. Degrad. Stabil., 66, 153 (1999).CrossRefGoogle Scholar
  5. 5.
    M. J. Tsafack and J. Levalois-Grützmacher, Surf. Coat. Tech., 201, 2599 (2006).CrossRefGoogle Scholar
  6. 6.
    J. M. Tour, “Synthesis and Testing of New Flame Retardant Monomers and Polymer Additives”, William Marsh Rice University: Houston, Texas, 2006.Google Scholar
  7. 7.
    M. S. Subbulakshmi, N. Kasturiya, Hansraj P. Bajaj, and A. K. Agarwal, J. Macromol. Sci.-Pol. R., 40, 85 (2000).CrossRefGoogle Scholar
  8. 8.
    M. Ahrens, “The U. S Fire Problem Overview Report: Leading Causes and Other Patterns and Trends”, National Fire Protection Association: Quincy, MA, 2003.Google Scholar
  9. 9.
    C. Q. Yang and H. Yang, “The Flame Retardant Nomex/Cotton and Nylon/Cotton Blend Fabrics for Protective Clothing, in Advances in Modern Woven Fabrics Technology” (S. Vassiliadis Ed.), InTech., 2011.Google Scholar
  10. 10.
    T.-S. Chung, J. Macromol. Sci.-Pol. R., 37, 277 (1997).Google Scholar
  11. 11.
    Author, “Polymer-bound Non-halogen Fire Resistant Compositions”, Patent Application No. PCT/US1998/005445, Solutia Inc., 1998.Google Scholar
  12. 12.
    X. Wu and C. Q. Yang, J. Fire Sci., 26, 351 (2008).CrossRefGoogle Scholar
  13. 13.
    D. Katović, S. F. Grgac, S. Bischof-Vukušić, and A. Katović, Fibre. Text. East. Eur., 20, 94 (2012).Google Scholar
  14. 14.
    M. Y. Wang, A. R. Horrocks, S. Horrocks, M. E. Hall, J. S. Pearson, and S. Clegg, J. Fire Sci., 18, 265 (2000).CrossRefGoogle Scholar
  15. 15.
    J. H. Koo, L. Pilato, and G. Wissler, J. Spacecraft Rockets., 44, 1250 (2007).CrossRefGoogle Scholar
  16. 16.
    S. C. Lao, C. Wu, T. J. Moon, J. H. Koo, A. Morgan, L. Pilato, and G. Wissler, J. Compos. Mater., 43, 1803 (2009).CrossRefGoogle Scholar
  17. 17.
    H. Wu, X. Yin, M. Krifa, M. Londa, and J. Koo, “Proc. SAMPE TECH 2011”, Fort Worth, TX, 2011.Google Scholar
  18. 18.
    X. Yin, H. Wu, M. Krifa, M. Londa, and J. Koo, “Proc. SAMPE TECH 2011”, Fort Worth, TX, 2011.Google Scholar
  19. 19.
    H. Wu, M. Krifa, and J. H. Koo, Text. Res. J., 84, 1106 (2014).CrossRefGoogle Scholar
  20. 20.
    X. Yin, M. Krifa, and J. H. Koo, J. Eng. Fiber. Fabr., 10 (2015).Google Scholar
  21. 21.
    V. Totolin, M. Sarmadi, S. O. Manolache, and F. S. Denes, J. Appl. Polym. Sci., 117, 281 (2010).Google Scholar
  22. 22.
    S. V. Levchik and E. D. Weil, Polym. Int., 49, 1033 (2000).CrossRefGoogle Scholar
  23. 23.
    E. D. Weil and S. Levchik, J. Fire Sci., 22, 251 (2004).CrossRefGoogle Scholar
  24. 24.
    S. Bourbigot, E. Devaux, and X. Flambard, Polym. Degrad. Stabil., 75, 397 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Wu, M. Krifa, and J. Koo, “Proc. SAMPE Conference”, Seattle, WA, 2014.Google Scholar
  26. 26.
    Y.-C. Ahn and D. R. Paul, Polymer, 47, 2830 (2006).CrossRefGoogle Scholar
  27. 27.
    A. J. Oshinski, H. Keskkula, and D. R. Paul, Polymer, 37, 4891 (1996).CrossRefGoogle Scholar
  28. 28.
    A. J. Oshinski, H. Keskkula, and D. R. Paul, Polymer, 33, 268 (1992).CrossRefGoogle Scholar
  29. 29.
    O. K. Muratoglu, A. S. Argon, R. E. Cohen, and M. Weinberg, Polymer, 36, 921 (1995).CrossRefGoogle Scholar
  30. 30.
    H. Wu, M. Krifa, and J. Koo, “Proc. SAMPE/CAMX: The Composites and Advanced Materials Expo”, Dallas, TX, 2015.Google Scholar
  31. 31.
    U. Braun, B. Schartel, M. A. Fichera, and C. Jäger, Polym. Degrad. Stabil., 92, 1528 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Doğan and E. Bayramlı, Fire Mater., 38, 92 (2014).CrossRefGoogle Scholar
  33. 33.
    H. Wu, M. Krifa, and J. H. Koo, Polym.-Plast. Technol. Eng., 57, 727 (2018).CrossRefGoogle Scholar
  34. 34.
    H. Wu, R. Ortiz, R. D. A. Correa, M. Krifa, and J. H. Koo, Flame Retardancy and Thermal Stability of Materials, 1, 1 (2018).CrossRefGoogle Scholar
  35. 35.
    ASTM D 1577, “Standard Test Methods for Linear Density of Textile Fibers”, ASTM International, West Conshohocken, PA, 2012.Google Scholar
  36. 36.
    J. J. Huang, H. Keskkula, and D. R. Paul, Polymer, 45, 4203 (2004).CrossRefGoogle Scholar
  37. 37.
    R. P. Chartoff, J. D. Menczel, and S. H. Dillman, “Dynamic Mechanical Analysis (DMA), in Thermal Analysis of Polymers”, pp.387–495, John Wiley & Sons, Inc., 2008.Google Scholar
  38. 38.
    ASTM D 7309, “Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry”, 2013.Google Scholar
  39. 39.
    R. E. Lyon and R. N. Walters, J. Anal. Appl. Pyrol., 71, 27 (2004).CrossRefGoogle Scholar
  40. 40.
    R. E. Lyon, R. N. Walters, and S. I. Stoliarov, Polym. Eng. Sci., 47, 1501 (2007).CrossRefGoogle Scholar
  41. 41.
    M. Krifa, Text. Res. J., 78, 688 (2008).CrossRefGoogle Scholar
  42. 42.
    M. Krifa, Powder Technol., 194, 233 (2009).CrossRefGoogle Scholar
  43. 43.
    S. Bair, T. Yamaguchi, L. Brouwer, H. Schwarze, P. Vergne, and G. Poll, Tribol. Int., 79, 126 (2014).CrossRefGoogle Scholar
  44. 44.
    J. W. Cho and D. R. Paul, Polymer, 42, 1083 (2001).CrossRefGoogle Scholar
  45. 45.
    D. Wu, X. Wang, and R. Jin, Eur. Polym. J., 40, 1223 (2004).CrossRefGoogle Scholar
  46. 46.
    T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).CrossRefGoogle Scholar
  47. 47.
    H. Ohtani, T. Nagaya, Y. Sugimura, and S. Tsuge, J. Anal. Appl. Pyrol., 4, 117 (1982).CrossRefGoogle Scholar
  48. 48.
    H. Fong, W. Liu, C. S. Wang, and R. A. Vaia, Polymer, 43, 775 (2002).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.The University of Texas at Austin, C2200AustinUSA
  2. 2.Kent State University, FDMKentUSA

Personalised recommendations