Advertisement

Fibers and Polymers

, Volume 19, Issue 7, pp 1532–1538 | Cite as

The Application of Silica and Glass Fibers in Effective Thermoinsulation of Winter Apparels

  • Guang Yang
  • Xueyang Liu
  • Vitali Lipik
Article
  • 17 Downloads

Abstract

We studied the influence of silica and glass fibers on the properties of polyester non-woven padding, fixing interesting changes in thermoinsulation, thickness and stiffness of obtained composites. It was found that the combination of inorganic and polyester fibers allowed for obtaining improved thermoinsulating property, compared to non-woven materials based on individual fibers. The improvement is attributed to the enhanced reflectance and the decreased air permeability, which can reduce the heat lost through radiation and convection. The application of inorganic fibers also made the development of non-woven materials with small thickness, keeping thermoinsulating property similar or better, compared to the commonly used polyester non-woven padding. Furthermore, the designed non-woven composites in real models of winter jackets were evaluated in a climate chamber at -10 °C by infrared thermal camera. The results showed that the addition of inorganic fibers allowed the surface temperature of winter jackets more than 5 °C lower than that of winter jacket with pure polyester padding. They significantly enhanced the protection from cold and reduced heat loss from the human body.

Keywords

Silica fiber Glass fiber Polyester fiber Thermoinsulation Winter apparel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bartels in “Textiles in Sport” (R. Shishoo Ed.), p.177, Woodhead Publishing Limited, Cambridge England, 2005.Google Scholar
  2. 2.
    W. Song, D. Lai, and F. Wang, Fiber. Polym., 16, 2689 (2015).CrossRefGoogle Scholar
  3. 3.
    G. Song in “Textiles for Cold Weather Apparel” (J. T. Williams Ed.), p.19, Woodhead Publishing, New York, 2009.Google Scholar
  4. 4.
    T. A. Cappaert, J. A. Stone, J. W. Castellani, B. A. Krause, D. Smith, and B. A. Stephens, J. Athl. Training, 43, 640 (2008).CrossRefGoogle Scholar
  5. 5.
    C. Bankvall, J. Test. Eval., 1, 235 (1973).CrossRefGoogle Scholar
  6. 6.
    T. Hussain, M. Ashraf, A. Rasheed, S. Ahmad, and Z. Ali, “Textile Engineering: An Introduction”, Walter de Gruyter GmbH, Berlin/Boston, 2016.Google Scholar
  7. 7.
    G. Baig, J. Text. Inst., 102, 87 (2011).CrossRefGoogle Scholar
  8. 8.
    N. A. Kalebek and O. Babaarslan in “Non-woven Fabrics” (H.-Y. Jeon Ed.), p.1, InTech, Croatia, 2016.Google Scholar
  9. 9.
    M. S. Al-Homoud, Build. Environ., 40, 353 (2005).CrossRefGoogle Scholar
  10. 10.
    N. Mao and S. Russell, Text. Res. J., 77, 914 (2007).CrossRefGoogle Scholar
  11. 11.
    S. A. Ali and M. I. Khan, Imp. J. Interdiscip. Res., 3, 2054 (2017).Google Scholar
  12. 12.
    J. Song, Chinese Patent, CN 105420853 A (2016).Google Scholar
  13. 13.
    L. Li, Chinese Patent, CN 204224805 U (2015).Google Scholar
  14. 14.
    Z. Zhou, Chinese Patent, CN 104068533 A (2014).Google Scholar
  15. 15.
    “Criteria for a Recommended Standard: Occupational Exposure to Fibrous Glass”, U.S. Department of Health, Education and Welfare, DHEW (NIOSH), Washington D.C., 1977.Google Scholar
  16. 16.
    E. B. Heisel and F. E. Hunt, Arch. Environ. Health, 17, 705 (1968).CrossRefPubMedGoogle Scholar
  17. 17.
    W. N. Rom and S. B. Markowitz, “Environmental and Occupational Medicine”, Lippincott Williams & Wilkins, 2007.Google Scholar
  18. 18.
    S. Eichhorn, J. Hearle, M. Jaffe, and T. Kikutani, “Handbook of Textile Fibre Structure: Natural, Regenerated, Inorganic and Specialist Fibres”, Woodhead Publishing Limited and CRC Press, UK, 2009.CrossRefGoogle Scholar
  19. 19.
    A. Rao, “Principles and Practice of Pedodontics”, Jaypee Brothers Medical Publisher, India, 2012.CrossRefGoogle Scholar
  20. 20.
    C. J. Cleveland and C. G. Morris, “Dictionary of Energy”, Elsevier, Italy, 2005.Google Scholar
  21. 21.
    J. R. Martin and G. E. Lamb, Text. Res. J., 57, 721 (1987).CrossRefGoogle Scholar
  22. 22.
    W. P. Allen, W. A. Veronesi, R. J. Hall, M. J. Maloney, J. W. Appleby, D. C. Hague, and A. Khan, US Patent, 6652987 (2003).Google Scholar
  23. 23.
    C. Sun, J. Fan, H. Wu, Y. Wu, and X. Wan, Int. J. Cloth. Sci. Tech., 25, 380 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Mohammadi, P. Banks-Lee, and P. Ghadimi, Text. Res. J., 73, 802 (2003).CrossRefGoogle Scholar
  25. 25.
    J. Scott, “Hollow Fibers: Manufacture and Applications”, Noyes Data Corporation, Flew Jersey, 1981.Google Scholar
  26. 26.
    C. W. Lou, Y. L. Hsing, W. H. Hsing, and J. H. Lin, Fiber. Polym., 17, 1687 (2016).CrossRefGoogle Scholar
  27. 27.
    H. A. Kim and S. J. Kim, Fiber. Polym., 17, 427 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute for Sports ResearchNanyang Technological UniversitySingaporeSingapore
  2. 2.School of TextilesTianjin Polytechnic UniversityTianjinChina
  3. 3.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations