Advertisement

Fibers and Polymers

, Volume 19, Issue 2, pp 289–296 | Cite as

Optimization of Cellulose Extraction from Jute Fiber by Box-behnken Design

  • Lizandro Manzato
  • Mitsuo Lopes Takeno
  • Wanison André Gil Pessoa-Junior
  • Luis André Morais Mariuba
  • John Simonsen
Article
  • 90 Downloads

Abstract

Cellulose was isolated from plant material for the first time in 1839 by the French chemist Anselme Payen. In recent years, due to the need in reduce the world’s environmental problems, there has been an increase in studies related to the physical and chemical factors of cellulose. It is important to emphasize that experiments and studies with a cellulose occur individually, because of the variation in the amount of cellulose and the extraction method that differs from plant to plant. In the present study, we determined the optimal conditions for cellulose extraction of jute fiber, using the response surface method. The Box-Behnken Design (BBD) was used statistically evaluate the ratio effects of sodium hydroxide (NaOH) and sodium hypochlorite (NaClO), temperature and extraction time in the process used. The analysis of the results showed a significant variable in the linear and quadratic terms of the temperature and also a significant level of interaction in the effect between the variables of temperature and time. Besides this, the BBD used for the analysis of the extraction yield, resulted in a polynomial regression of second order, in complete agreement with experimental results, with R2=0.9627 (p<0.05). The optimal condition was obtained in a ratio of 1.3 at 45 °C for 2 h. Under the best possible conditions, the obtained experimental value is in accordance with the value predicted by the model, thus indicating a model combination and success to optimize the extraction conditions of the jute fiber pulp in the response surface methodology.

Keywords

Cellulose Jute fiber Box-Behnken Design Optmization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Seben, MS Thesis, UFRS, Porto Alegre, 2011.Google Scholar
  2. 2.
    A. E. S. Montebelo and C. J. C. Bacha, O Papel, 72, 47 (2011).Google Scholar
  3. 3.
    H. Chen in “Biotechnology of Lignocellulose”, pp.25–71, Springer Netherlands, 2014.CrossRefGoogle Scholar
  4. 4.
    O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Komuraiah, N. S. Humar, and B. D. Prasad, Mech. Compos. Mater., 50, 3 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Ummartyotin and H. Manuspiya, Renew. Sust. Energ Rev., 41, 1 (2015).CrossRefGoogle Scholar
  7. 7.
    J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, Cellulose, 15, 1 (2008).CrossRefGoogle Scholar
  8. 8.
    A. M. Bochek, I. L. Shevchuk, and V. N. Lavrent’ev, Russ. J. Appl. Chem., 76, 10 (2003).Google Scholar
  9. 9.
    D. M. Nascimento, J. S. Almeida, A. F. Dias, M. C. B. Figueirêdo, J. P. S. Morais, J. P. Feitosa, and M. D. F. Rosa, Carbohydr. Polym., 110, 456 (2014).CrossRefGoogle Scholar
  10. 10.
    Y. Yue, J. Han, G. Han, Q. Zhang, A. D. French, and Q. Wu, Carbohydr. Polym., 133, 438 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Nam, A. D. French, B. D. Condon, and M. Concha, Carbohydr. Polym., 135, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    G. Mondragon, S. Fernandes, A. Retegi, C. Peña, I. Algar, A. Eceiza, and A. Arbelaiz, Ind. Crop. Prod., 55, 140 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Poletto, H. L. Ornaghi, and A. J. Zattera, Materials, 7, 9 (2014).CrossRefGoogle Scholar
  14. 14.
    L. da Luz Seben and I. C. Paula in “XVIII International Conference on Industrial Engineering and Operations Management”, pp.143.1–143.11, ABEPRO, 2012.Google Scholar
  15. 15.
    J. Xu, W. Wang, H. Liang, Q. Zhang, and Q. Li, Ind. Crop. Prod., 76, 487 (2015).CrossRefGoogle Scholar
  16. 16.
    L. Jiang, Carbohydr. Polym., 79, 2 (2010).CrossRefGoogle Scholar
  17. 17.
    R. Chen, C. Jin, Z. Tong, J. Lu, L. Tan, L. Tian, and Q. Chang, Carbohydr. Polym., 136, 187 (2016).CrossRefGoogle Scholar
  18. 18.
    Z. Maache-Rezzoug, G. Pierre, A. Nouviaire, T. Maugard, and S. A. Rezzoug, Biomass Bioenerg., 35, 7 (2011).CrossRefGoogle Scholar
  19. 19.
    M. M. Ba-Abbad, P. V. Chai, M. S. Takriff, A. Benamor, and A. W. Mohammad, Mater. Des., 86 (2015).Google Scholar
  20. 20.
    S. Cabanas-Polo and A. R. Boccaccini, J. Eur. Ceram. Soc., 36, 2 (2016).CrossRefGoogle Scholar
  21. 21.
    R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook in “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, 4nd ed., pp.413–417, John Wiley & Sons, 2016.Google Scholar
  22. 22.
    M. I. F. da Mota, MS Thesis, FEUP, Porto, 2011.Google Scholar
  23. 23.
    R. E. Bruns, I. S. Scarminio, and B. de Barros in “Statistical Design-chemometrics”, Vol. 25, Elsevier, 2006.Google Scholar
  24. 24.
    Z. Sheng, J. Li, and Y. Li, Afr. J. Biotech., 10, 55 (2011).CrossRefGoogle Scholar
  25. 25.
    S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos, Anal. Chim. Acta, 597, 2 (2007).CrossRefGoogle Scholar
  26. 26.
    A. Alaoui, K. E. Kacemi, K. E. Ass, and S. Kitane, T. Indian I. Metals, 68, 5 (2015).Google Scholar
  27. 27.
    J. Zolgharnein, A. Shahmoradi, and J. B. Ghasemi, J. Chemometr., 27, 2 (2013).CrossRefGoogle Scholar
  28. 28.
    L. G. J. M. A. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 10 (1959).CrossRefGoogle Scholar
  29. 29.
    R. H. Myers, D. C. Montgomery, G. G. Vining, C. M. Borror, and S. M. Kowalski, J. Qual. Technol., 36, 1 (2004).CrossRefGoogle Scholar
  30. 30.
    P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, and J. Khim, Open Chem., 12, 2 (2014).Google Scholar
  31. 31.
    A. M. Joglekar and A. T. May, Cereal Foods World, 32, 12 (1987).Google Scholar
  32. 32.
    M. Burton and K. C. Kurien, J. Phys. Chem., 63, 6 (1959).CrossRefGoogle Scholar
  33. 33.
    Z. Zhang and H. Zheng, J. Hazar. Mater., 172, 2 (2009).Google Scholar
  34. 34.
    M. A. Rauf, N. Marzouki, and B. K. Körbahti, J. Hazar. Mater., 159, 2 (2008).CrossRefGoogle Scholar
  35. 35.
    M. N. Chong, H. Y. Zhu, and B. Jin, Chem. Eng. J., 156, 2 (2010).CrossRefGoogle Scholar
  36. 36.
    Q. Wang, H. Ma, W. Xu, L. Gong, W. Zhang, and D. Zou, Biochem. Eng. J., 39, 3 (2008).CrossRefGoogle Scholar
  37. 37.
    M. G. Thomas, E. Abraham, P. Jyotishkumar, H. J. Maria, L. A. Pothen, and S. Thomas, Int. J. Biol. Macromol., 81, 768 (2015).CrossRefGoogle Scholar
  38. 38.
    D. Bondeson, A. P. Mathew, and K. Oksman, Cellulose, 13, 2 (2006).CrossRefGoogle Scholar
  39. 39.
    P. Penjumras, R. B. A. Rahman, R. A. Talib, and K. Abdan, Agr. Agric. Sci. Procedia, 2, 74 (2014).Google Scholar
  40. 40.
    X. F. Sun, F. Xu, R. C. Sun, P. Fowler, and M. S. Baird, Carbohydr. Res., 340, 1 (2005).CrossRefGoogle Scholar
  41. 41.
    A. A. Oun and J. W. Rhim, Mater. Lett., 168, 146 (2016).CrossRefGoogle Scholar
  42. 42.
    C. Y. Liang and R. H. Marchessault, J. Polym. Sci., 37, 132 (1959).CrossRefGoogle Scholar
  43. 43.
    D. N. Mahato, B. K. Mathur, and S. Bhattacherjee, Indian J. Fibre Text. Res., 38, 1 (2013).Google Scholar
  44. 44.
    I. C. Spiridon, A. Teaca, and R. Bodîrlău, BioResources, 6, 1 (2011).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lizandro Manzato
    • 1
    • 2
  • Mitsuo Lopes Takeno
    • 1
  • Wanison André Gil Pessoa-Junior
    • 1
  • Luis André Morais Mariuba
    • 3
  • John Simonsen
    • 2
  1. 1.Instituto Federal do Amazonas, Campus Manaus Distrito IndustrialManausBrazil
  2. 2.Department Wood Science & EngineeringOregon State UniversityCorvallisUSA
  3. 3.Fundação Oswaldo CruzInstituto Leônidas e Maria DeaneManuausBrazil

Personalised recommendations