Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1150–1156 | Cite as

Preparation of Porous m-aramid/cellulose Blend Membranes with High Moisture and Air Permeability by an Enzymatic Degradation Method

  • Rao Fu
  • Congcong Dong
  • Changmei Sun
  • Rongjun Qu
  • Chunnuan Ji
  • Ying Zhang
Article
  • 30 Downloads

Abstract

Enzyme degradation method was adopted to prepare porous m-aramid/cellulose blend membranes with high air permeability, water absorbency and moisture permeability. This facile preparation process started by casting a blend membrane from a DMAc/LiCl solution containing m-aramid and cellulose. An enzyme was then used to degrade the cellulose in the blend membrane, resulting in porous structures. Five enzymes including cellulase, chitosanase, papain, lipase, and glucose oxidase, were evaluated and cellulase was found to be optimal. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the miscibility and the morphology of the m-aramid/cellulose blend membranes before and after degradation, respectively. The thermal stability of the blend membranes were characterized by thermogravimetric analysis (TGA). The properties including air permeability, water absorbency and moisture permeability of the m-aramid/cellulose blend membranes greatly improved after degradation as compared to those of the pure m-aramid. This paper provided a new approach to preparing novel textile materials with high comfortability.

Keywords

Enzyme degradation m-aramid/cellulose Cellulase Air permeability Moisture permeability Water absorbency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Andreopoulos, J. Appl. Polym. Sci., 38, 1053 (1989).CrossRefGoogle Scholar
  2. 2.
    H. H. Yang in “Aromatic High-strength Fibers”, pp.66-289, Wiley, New York, 1989.Google Scholar
  3. 3.
    R. A. F. Moore and H. D. Weigmann, Text. Res. J., 56, 254 (1986).CrossRefGoogle Scholar
  4. 4.
    G. Sun, H. S. Yoo, X. S. Zhang, and N. Pan, Text. Res. J., 70, 567 (2000).CrossRefGoogle Scholar
  5. 5.
    H. H. Yang in “Kevlar Aramid Fiber”, pp.26-40, Wiley, Chichester, 1993.Google Scholar
  6. 6.
    A. Onda, T. Ochi, and K. Yanagisawa, Green. Chem., 10, 1033 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Fukuoka and P. L. Dhepe, Angew. Chem. Int. Ed., 118, 5285 (2006).CrossRefGoogle Scholar
  8. 8.
    J. J. Blaker, K. Y. Lee, and A. Bismarck, J. Biobased. Mater. Bio., 5, 1 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Lee, R. M. Broughton, S. D. Worely, and T. S. Huang, J. Eng. Fiber. Fabr., 2, 43 (2007).Google Scholar
  10. 10.
    D. Ingildeev, F. Hermanutz, K. Bredereck, and F. Effenberger, Macromol. Mater. Eng., 297, 585 (2012).CrossRefGoogle Scholar
  11. 11.
    S. S. Kim, K. Y. Ryoo, J. Lim, B. Seo, and J. Lee, Fiber. Polym., 14, 409 (2013).CrossRefGoogle Scholar
  12. 12.
    S. S. Kim, M. Kim, and J. Lee, J. Appl. Polym. Sci., 129, 3454 (2013).CrossRefGoogle Scholar
  13. 13.
    S. S. Kim, J. Jeong, and J. Lee, Ind. Eng. Chem. Res., 53, 1638 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Lee and H. S. Whang, J. Appl. Polym. Sci., 122, 2345 (2011).CrossRefGoogle Scholar
  15. 15.
    M. Baiardo, G. Frisoni, M. Scandola, and A. Licciardello, J. Appl. Polym. Sci., 83, 38 (2002).CrossRefGoogle Scholar
  16. 16.
    K. K. Pandey, J. Appl. Polym. Sci., 71, 1969 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Bourtoom and M. S. Chinnan, Food. Sci. Technol. Int., 41, 1633 (2008).Google Scholar
  18. 18.
    Y. T. Jia, J. Gong, X. H. Gu, H. Y. Kim, J. Dong, and X. Y. Shen, Carbohydr. Polym., 67, 403 (2007).CrossRefGoogle Scholar
  19. 19.
    L. Lu, F. Peng, Z. Jiang, and J. Wang, J. Appl. Polym. Sci., 101, 167 (2006).CrossRefGoogle Scholar
  20. 20.
    H. Y. Kweon, I. C. Um, and Y. H. Park, Polymer, 42, 6651 (2001).CrossRefGoogle Scholar
  21. 21.
    Y. Wan, H. Wu, A. Yu, and D. Wen, Biomacromolecules, 7, 1362 (2006).CrossRefGoogle Scholar
  22. 22.
    F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Rao Fu
    • 1
  • Congcong Dong
    • 1
  • Changmei Sun
    • 1
  • Rongjun Qu
    • 1
  • Chunnuan Ji
    • 1
  • Ying Zhang
    • 1
  1. 1.School of Chemistry and Materials ScienceLudong UniversityYantaiChina

Personalised recommendations