Advertisement

Fibers and Polymers

, Volume 19, Issue 6, pp 1327–1334 | Cite as

Influence of Low Pressure Plasma Treatment on the Durability of Thermoplastic Composites LDPE-flax/coconut under Thermal and Humidity Conditions

  • B. Enciso
  • J. Abenojar
  • E. Paz
  • M. A. Martínez
Article
  • 22 Downloads

Abstract

The aim of this work is to study the influence of low pressure plasma (LPP) treatment on the durability of thermoplastic composites using flax and coconut fibers as reinforcement. Two different aging conditions were evaluated, high temperature (73 °C) and high temperature plus water immersion. In both cases five aging times (1, 2, 8, 30 and 60 days) were evaluated. Composite materials were prepared with treated and untreated flax and coconut fibers with 30 % of fiber content and a low density polyethylene (LDPE) matrix. Composites were manufactured using a rotor mixer and a hot plates press. The influence of the aging conditions on each type of fiber, flax or coconut, as well as the plasma treatment effect in all composite materials were studied by determining water absorption and mechanical properties. Mechanical properties were assessed by three point bending tests and the water uptake was determined by weight measurements. Thermal properties were also studied by Differential Scanning Calorimetric (DSC) technique. Finally, the liquids where the specimens were submerged in were evaluated by ultraviolet spectroscopy to analyse cellulose or lignin amounts dissolved. In all cases, durability was mainly affected by the humidity but not so much by high temperatures, obtaining better bending strength and Young’s modulus in the LPP treated materials, especially those with flax fiber reinforcement.

Keywords

Natural fibers composites Durability Fiber/polymer bond Surface treatment Plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Herrera-Franco and A. Valadez-González, Compos. Pt. B-Eng., 36, 597 (2005).CrossRefGoogle Scholar
  2. 2.
    M. J. John and S. Thomas, “Biofibers and Biocomposites”, Carbohydr. Polym., 71, 343 (2008).Google Scholar
  3. 3.
    K. Charlet, J. P. Jernot, S. Eve, M. Gomina, and J. Bréard, Carbohydr. Polym., 82, 54 (2010).CrossRefGoogle Scholar
  4. 4.
    A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996).CrossRefGoogle Scholar
  5. 5.
    O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Harish, D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai, Mater. Charact., 60, 44 (2009).CrossRefGoogle Scholar
  7. 7.
    P. R. Hornsby, E. Hinrichsen, and K. Tarverdi, J. Mater. Sci., 32, 1009 (1997).CrossRefGoogle Scholar
  8. 8.
    K. G. Satyanarayana, J. L. Guimarães, and F. Wypych, Compos. Pt. A-Appl. Sci. Manuf., 38, 1694 (2007).CrossRefGoogle Scholar
  9. 9.
    Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des., 47, 424 (2013).CrossRefGoogle Scholar
  10. 10.
    D. B. Dittenber and H. V. S. Gangarao, Compos. Pt. AAppl. Sci. Manuf., 43, 1419 (2012).CrossRefGoogle Scholar
  11. 11.
    T. Sen and H. N. J. Reddy, Int. J. Innov. Maagement Technol., 2, 186 (2011).Google Scholar
  12. 12.
    L. B. Manfredi, E. S. Rodríguez, M. Wladyka-Przybylak, and A. Vázquez, Polym. Degrad. Stab., 91, 255 (2006).CrossRefGoogle Scholar
  13. 13.
    P. Methacanon, U. Weerawatsophon, N. Sumransin, C. Prahsarn, and D. T. Bergado, Carbohydr. Polym., 82, 1090 (2010).CrossRefGoogle Scholar
  14. 14.
    X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).CrossRefGoogle Scholar
  15. 15.
    C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectroc. Acta Pt. B-Atom. Spectr., 61, 2 (2006).CrossRefGoogle Scholar
  16. 16.
    N. S. J. Braithwaite, Plasma Sources Sci. Technol., 9, 517 (2000).CrossRefGoogle Scholar
  17. 17.
    H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., 9, 441 (2000).CrossRefGoogle Scholar
  18. 18.
    N. Encinas, B. Díaz-Benito, J. Abenojar, and M. A. Martínez, Surf. Coatings Technol., 205, 396 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Rodríguez-Villanueva, N. Encinas, J. Abenojar, and M. A. Martínez, Surf. Coatings Technol., 236, 450 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Enciso, J. Abenojar, and M. A. Martínez, Cellulose, 24, 1791 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Comyn, “Polymer Permeability”, pp.1–10, Elsevier Applied Science Publishers, London, 1985.CrossRefGoogle Scholar
  22. 22.
    M. Assarar, D. Scida, A. El Mahi, C. Poilâne, and R. Ayad, Mater. Des., 32, 788 (2011).CrossRefGoogle Scholar
  23. 23.
    C.-H. Shen and G. S. Springer, J. Compos. Mater., 10, 2 (1976).CrossRefGoogle Scholar
  24. 24.
    A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).CrossRefGoogle Scholar
  25. 25.
    Y. Li, Y. Mai, and L. Ye, Compos. Sci. Technol., 60, 2037 (2006).CrossRefGoogle Scholar
  26. 26.
    A. Espert, F. Vilaplana, and S. Karlsson, Compos. Pt. AAppl. Sci. Manuf., 35, 1267 (2004).CrossRefGoogle Scholar
  27. 27.
    O. Faruk and M. Sain, “Biofiber Reinforcement in Composite Materials”, UK: Elsevier Ltd., 2014.Google Scholar
  28. 28.
    A. Arbelaiz, B. Fernández, J. A. Ramos, A. Retegi, R. Llano-Ponte, and I. Mondragon, Compos. Sci. Technol., 65, 1582 (2005).CrossRefGoogle Scholar
  29. 29.
    B. F. Abu-Sharkh and H. Hamid, Polym. Degrad. Stabil., 85, 967 (2004).CrossRefGoogle Scholar
  30. 30.
    G. B. Nagarajappa and K. K. Pandey, J. Photochem. Photobiol. B: Biol., 155, 20 (2016).CrossRefGoogle Scholar
  31. 31.
    M. Karlovits and D. Gregor-svetec, Acta Polytechnica Hungarica, 9, 81 (2012).Google Scholar
  32. 32.
    K. Wang, F. Xu, and R. Sun, Int. J. Mol. Sci., 11, 2988 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    A. K. Kumar, B. S. Parikh, and M. Pravakar, Environ. Sci. Pollut. Res., 23, 9265 (2016).CrossRefGoogle Scholar
  34. 34.
    K. Ross and G. Mazza, Int. J. Mol. Sci., 11, 4035 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    E. Privas and P. Navard, Carbohydr. Polym., 93, 300 (2013).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • B. Enciso
    • 1
  • J. Abenojar
    • 1
  • E. Paz
    • 2
  • M. A. Martínez
    • 1
  1. 1.Materials Science and Engineering Department, IAAB, Materials Performance GroupUniversidad Carlos III de MadridMadridSpain
  2. 2.Mechanical Engineering DepartmentInstitute for Research in Technology (IIT) Universidad Pontificia ComillasMadridSpain

Personalised recommendations