Fibers and Polymers

, Volume 19, Issue 6, pp 1207–1218 | Cite as

Development of Superhydrophobic Microfibers for Bandage Coatings

  • T. S. Gokul Raja
  • K. JeyasubramanianEmail author
  • M. Indhumathy


In this research work, a fabricated composite fiber is proposed to protect wound surfaces from infectious organisms present in water. The composite fiber comprising PMMA, ZnO, and zinc stearate was developed using an electrospinning technique. The fiber surface was scientifically studied using scanning electron microscope, Energy dispersive analysis of X-rays, powder X-ray diffraction analysis and Fourier transform Infra-Red analysis. The pores present in between perpendicularly aligned fibers serves as an excellent medium for vapor transport to a wound surface. The maximum water contact angle of the developed fiber surface was approximately 151 degrees. A commercial cotton bandage after coated with this composite layer behaves as a perfect barrier to the entry of infectious water towards the wound. The pores in the fiber surface support rich supply of environmental oxygen and transport of exudate vapor from the wound. This fiber when coated over a cotton bandage cloth on one side served as an excellent wound protecting bandage against the penetration of external microbial water and also it admits the air, water vapor etc., towards the interior. Water penetration ability of hydrophilic cotton bandage and the water arresting ability of superhydrophobic fiber coated bandage were evaluated using a facile technique. Furthermore, antimicrobial activity of test samples was evaluated against gram positive and gram negative microorganism. Also, a bacterial infiltration test supports the blocking capability of superhydrophobic fiber to water-borne bacteria. The results obtained through this experiment may be used in future as wound healing bandages in an efficient manner.


Superhydrophobic bandage Porosity Diffusion ZnO Antimicrobial activity Biomedical applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. C. Madison, J. Invest. Dermatol., 121, 231 (2003).CrossRefPubMedGoogle Scholar
  2. 2.
    G. S. Lazarus, D. M. Cooper, D. R. Knighton, D. J. Margolis, R. E. Pecoraro, G. Rodeheaver, and M. C. Robson, Arch. Dermatol., 130, 489 (1994).CrossRefPubMedGoogle Scholar
  3. 3.
    S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, Biomaterials, 25, 2595 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    T. Jiang, L. Liu, and J. Yao, Fiber. Polym., 12, 620 (2011).CrossRefGoogle Scholar
  5. 5.
    J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, J. Pharm. Sci., 97, 2892 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    G. N. Broughton, J. E. Janis, and C. E. Attinger, Plast. Reconstr. Surg., 117 (2006).Google Scholar
  7. 7.
    Y. Zhang, C. T. Lim, S. Ramakrishna, and Z.-M. Huang, J. Mater. Sci. Mater. Med., 16, 933 (2005).CrossRefPubMedGoogle Scholar
  8. 8.
    J. A. Stewart, O. L. McGrane, and I. S. Wedmore, Wilderness Environ. Med., 25, 103 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    J. Dutra, S. Carvalho, A. Zampirolli, R. Daltoé, R. Teixeira, F. Careta, M. Cotrim, R. Oréfice, and J. Villanova, Eur. J. Pharm. Biopharm., 113, 11 (2017).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Şenel and S. J. McClure, Adv. Drug Del. Rev., 56, 1467 (2004).CrossRefGoogle Scholar
  11. 11.
    Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang, and R. Chen, Carbohydr. Polym., 156, 460 (2017).CrossRefPubMedGoogle Scholar
  12. 12.
    S. F. Swaim, R. L. Gillette, E. A. Sartin, S. H. Hinkle, and S. L. Coolman, Am. J. Vet. Res., 61, 1574 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    R. Cooper, Nurs. Times, 104, 46 (2007).Google Scholar
  14. 14.
    S. G. Bell, Neonatal Netw., 26, 247 (2007).CrossRefPubMedGoogle Scholar
  15. 15.
    J. R. Davidson, Vet. Clin. North Am. Small Anim. Pract., 45, 537 (2015).CrossRefPubMedGoogle Scholar
  16. 16.
    G. D. Winter and J. T. Scales, Nature, 197, 91 (1963).CrossRefPubMedGoogle Scholar
  17. 17.
    R. Xu, H. Xia, W. He, Z. Li, J. Zhao, B. Liu, Y. Wang, Q. Lei, Y. Kong, Y. Bai, Z. Yao, R. Yan, H. Li, R. Zhan, S. Yang, G. Luo, and J. Wu, Sci. Rep., 6, 24596 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    C. Su, H. Yang, H. Zhao, Y. Liu, and R. Chen, Chem. Eng. J., 330, 423 (2017).CrossRefGoogle Scholar
  19. 19.
    K. Jeyasubramanian and T. Gokul Raja, Arch. Mater. Sci. Eng., 78, 66 (2016).CrossRefGoogle Scholar
  20. 20.
    M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura, and K. Uchida, Langmuir, 31, 7355 (2015).CrossRefPubMedGoogle Scholar
  21. 21.
    C.-I. Su, J.-H. Shih, M.-S. Huang, C.-M. Wang, W.-C. Shih, and Y.-S. Liu, Fiber. Polym., 13, 698 (2012).CrossRefGoogle Scholar
  22. 22.
    A. M. Abdelgawad, S. M. Hudson, and O. J. Rojas, Carbohydr. Polym., 100, 166 (2014).CrossRefPubMedGoogle Scholar
  23. 23.
    J.-P. Chen, G.-Y. Chang, and J.-K. Chen, Colloids Surf. Physicochem. Eng. Aspects, 313, 183 (2008).CrossRefGoogle Scholar
  24. 24.
    O. Shanmugasundaram and R. M. Gowda, Fiber. Polym., 12, 15 (2011).CrossRefGoogle Scholar
  25. 25.
    C. Su, H. Yang, S. Song, B. Lu, and R. Chen, Chem. Eng. J., 309, 366 (2017).CrossRefGoogle Scholar
  26. 26.
    G. R. T. Suyambulingam, K. Jeyasubramanian, V. K. Mariappan, P. Veluswamy, H. Ikeda, and K. Krishnamoorthy, Chem. Eng. J., 320, 468 (2017).CrossRefGoogle Scholar
  27. 27.
    J. Li, H. Wan, Y. Ye, H. Zhou, and J. Chen, Appl. Surf. Sci., 258, 3115 (2012).CrossRefGoogle Scholar
  28. 28.
    X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, J. Controlled Release, 185, 12 (2014).CrossRefGoogle Scholar
  29. 29.
    Z. Liu, J.-H. Zhao, P. Liu, and J.-H. He, Appl. Surf. Sci., 364, 516 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Li, J. T. McCann, Y. Xia, and M. Marquez, J. Am. Ceram. Soc., 89, 1861 (2006).CrossRefGoogle Scholar
  31. 31.
    A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 89, 3018 (2001).CrossRefGoogle Scholar
  32. 32.
    S. Roy, V. M. Suresh, and T. K. Maji, Chem. Sci., 7, 2251 (2016).CrossRefPubMedGoogle Scholar
  33. 33.
    D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).CrossRefGoogle Scholar
  34. 34.
    S. Thampi, V. Muthuvijayan, and R. Parameswaran, J. Appl. Polym. Sci., 132 (2015).Google Scholar
  35. 35.
    K. Ghosal, A. Manakhov, L. Zajíčková, and S. Thomas, AAPS PharmSciTech, 18, 72 (2017).CrossRefPubMedGoogle Scholar
  36. 36.
    T. G. Raja and K. Jeyasubramanian, Appl. Surf. Sci., 423, 293 (2017).CrossRefGoogle Scholar
  37. 37.
    S. Thangavel, K. Krishnamoorthy, S.-J. Kim, and G. Venugopal, J. Alloys Compd., 683, 456 (2016).CrossRefGoogle Scholar
  38. 38.
    J. K. M. A. do Rêgo, J. H. O. do Nascimento, P. Agrawal, T. J. A. Mélo, M. C. B. Costa, and E. N. Ito, Dyes Pigm., 142, 350 (2017).CrossRefGoogle Scholar
  39. 39.
    N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).CrossRefPubMedGoogle Scholar
  40. 40.
    X. Cai, P. Zhu, X. Lu, Y. Liu, T. Lei, and D. Sun, J. Mater. Sci., 52, 14004 (2017).CrossRefGoogle Scholar
  41. 41.
    B. S. Jha, R. J. Colello, J. R. Bowman, S. A. Sell, K. D. Lee, J. W. Bigbee, G. L. Bowlin, W. N. Chow, B. E. Mathern, and D. G. Simpson, Acta Biomater., 7, 203 (2011).CrossRefPubMedGoogle Scholar
  42. 42.
    U. Cengiz and C. E. Cansoy, Appl. Surf. Sci., 335, 99 (2015).CrossRefGoogle Scholar
  43. 43.
    Y. Ma, X. Cao, X. Feng, Y. Ma, and H. Zou, Polymer, 48, 7455 (2007).CrossRefGoogle Scholar
  44. 44.
    R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).CrossRefGoogle Scholar
  45. 45.
    C. Su, Z. Lu, H. Zhao, H. Yang, and R. Chen, Appl. Surf. Sci., 353, 735 (2015).CrossRefGoogle Scholar
  46. 46.
    S. Balamurugan, K. Dheebikha, and T. Gokul Raja, J. Nanosci. Nanotechnol., 16, 677 (2016).CrossRefPubMedGoogle Scholar
  47. 47.
    K. Jeyasubramanian, T. S. G. Raja, S. Purushothaman, M. V. Kumar, and I. Sushmitha, Electrochim. Acta, 227, 401 (2017).CrossRefGoogle Scholar
  48. 48.
    J. Boateng and O. Catanzano, J. Pharm. Sci., 104, 3653 (2015).CrossRefPubMedGoogle Scholar
  49. 49.
    Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2007).CrossRefGoogle Scholar
  50. 50.
    J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams, “Bergey’s Manual of Determinative Bacteriology”, 9th ed., p.209, p.544, Lippincott Williams & Wilkins, Baltimore, MD, 1994.Google Scholar
  51. 51.
    D. El-Hadedy and S. A. El-Nour, J. Genet. Eng. Biotechnol., 10, 129 (2012).CrossRefGoogle Scholar
  52. 52.
    A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, Int. J. Nanomedicine, 7, 6003 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    E. Hoseinzadeh, M.-Y. Alikhani, M.-R. Samarghandi, and M. Shirzad-Siboni, Desalination Water Treat., 52, 4969 (2014).CrossRefGoogle Scholar
  54. 54.
    J. M. Yousef and E. N. Danial, J. Health Sci., 2, 38 (2012).Google Scholar
  55. 55.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad, Nano Micro Lett., 7, 219 (2015).CrossRefGoogle Scholar
  56. 56.
    D. Liang, Z. Lu, H. Yang, J. Gao, and R. Chen, ACS Appl. Mater. Interfaces, 8, 3958 (2016).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • T. S. Gokul Raja
    • 1
  • K. Jeyasubramanian
    • 1
    Email author
  • M. Indhumathy
    • 2
  1. 1.Centre for Nanoscience and Technology, Department of Mechanical EngineeringMepco Schlenk Engineering CollegeSivakasiIndia
  2. 2.Department of BiotechnologyP.S.R Engineering CollegeSivakasiIndia

Personalised recommendations