Advertisement

Fibers and Polymers

, Volume 18, Issue 11, pp 2187–2195 | Cite as

Vibration damping of flax fibre-reinforced polypropylene composites

  • Md Zillur Rahman
  • Krishnan Jayaraman
  • Brian Richard Mace
Article

Abstract

This work investigates the effects of fibre content and fibre orientation on the damping of flax fibre-reinforced polypropylene composites. Laminates of various fibre contents were manufactured by a vacuum bagging process; their dynamic behaviour were then found from the vibration measurements of beam test specimens using an impulse hammer technique to frequencies of 1 kHz. The frequency response of a sample was measured and the response at resonance was used to estimate the natural frequency and loss factor. The single-degree-of-freedom circle-fit method and the Newton’s divided differences formula were used to estimate the natural frequencies as well as the loss factors. The damping estimates were also investigated using a “carpet” plot. Experiments were subsequently conducted on a range of samples with different fibre volume fractions and orientations. The results show significant variations in natural frequencies and loss factors according to the variations in fibre orientation. Composites containing 45°, 60° and 90° fibre orientation exhibit approximately the same natural frequencies. Composites with differing fibre orientations exhibit different loss factors for the various modes of vibration, and the maximum loss factor is obtained for the case of 45° fibre orientation, with the loss factor generally lying in the range of 2-7 %. It was found that the loss factor increases with increasing frequency and decreases slightly with increasing fibre content. These outcomes indicate that flax fibre-reinforced composite could be a commercially viable material for applications in which noise and vibration are significant issues and where a significant amount of damping is required.

Keywords

Composite materials Flax-polypropylene composites Damping Loss factor Natural frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Li, Y. Luo, and S. Han, J. Biobased Mater. Bioenergy, 4, 164 (2010).CrossRefGoogle Scholar
  2. 2.
    F. Duc, P. E. Bourban, and J. A. E. Manson, Compos. Sci. Technol., 102, 94 (2014).CrossRefGoogle Scholar
  3. 3.
    F. Duc, P. E. Bourban, C. J. G. Plummer, and J. A. E. Manson, Compos. Pt. A-Appl. Sci. Manuf., 64, 115 (2014).CrossRefGoogle Scholar
  4. 4.
    D. D. L. Chung, J. Mater. Sci., 36, 5733 (2001).CrossRefGoogle Scholar
  5. 5.
    D. I. Jones, “Handbook of Viscoelastic Vibration Damping”, p.7, John Wiley & Sons Ltd., Chichester, West Sussex, England, 2001.Google Scholar
  6. 6.
    R. F. Gibson, Compos. Struct., 92, 2793 (2010).CrossRefGoogle Scholar
  7. 7.
    B. Wielage, T. Lampke, H. Utschick, and F. Soergel, J. Mater. Process. Technol., 139, 140 (2003).CrossRefGoogle Scholar
  8. 8.
    F. Duc, P. E. Bourban, and J. A. E. Manson, J. Reinf. Plast. Compos., 33, 1625 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, Compos. Sci. Technol., 65, 1077 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Joseph, G. Mathew, K. Joseph, G. Groeninckx, and S. Thomas, Compos. Pt. A-Appl. Sci. Manuf., 34, 275 (2003).CrossRefGoogle Scholar
  11. 11.
    K. Nair, S. Thomas, and G. Groeninckx, Compos. Sci. Technol., 61, 2519 (2001).CrossRefGoogle Scholar
  12. 12.
    L. A. Pothan, Z. Oommen, and S. Thomas, Compos. Sci. Technol., 63, 283 (2003).CrossRefGoogle Scholar
  13. 13.
    M. J. L. Guen, R. H. Newman, A. Fernyhough, and M. P. Staiger, Compos. Pt. A-Appl. Sci. Manuf., 67, 37 (2014).CrossRefGoogle Scholar
  14. 14.
    L. D. Landro and W. Lorenzi, J. Biobased Mater. Bioenergy, 3, 238 (2009).CrossRefGoogle Scholar
  15. 15.
    L. D. Landro and W. Lorenzi, Macromol. Symp., 286, 145 (2009).CrossRefGoogle Scholar
  16. 16.
    A. Etaati, S. A. Mehdiza-deh, H. Wang, and S. Pather, J. Reinf. Plast. Compos., 33, 330 (2013).CrossRefGoogle Scholar
  17. 17.
    T. Dias and R. Monaragala, Meas. Sci. Technol., 17, 2499 (2006).CrossRefGoogle Scholar
  18. 18.
    K. S. Kumar, I. Siva, P. Jeyaraj, J. T. W. Jappes, S. C. Amico, and N. Rajini, Mater. Des., 56, 379 (2014).CrossRefGoogle Scholar
  19. 19.
    J.-T. Wang, F. Jin, and C.-H. Zhang, Soil Dyn. Earthq. Eng., 39, 138 (2012).CrossRefGoogle Scholar
  20. 20.
    D. J. Ewins, “Modal Testing: Theory, Practice and Application”, pp.310–318, Research Studies Press Ltd., Baldock, Hertfordshire, England, 2000.Google Scholar
  21. 21.
    J. Silva and N. Maia, J. Sound Vib., 124, 13 (1988).CrossRefGoogle Scholar
  22. 22.
    N. Maia and J. Silva, “Theoretical and Experimental Modal Analysis”, pp.219–227, Research Studies Press Ltd., Baldock, Hertfordshire, England, 1997.Google Scholar
  23. 23.
    M. Assarar, W. Zouari, H. Sabhi, R. Ayad, and J.-M. Berthelot, Compos. Struct., 132, 148 (2015).CrossRefGoogle Scholar
  24. 24.
    K. Cheour, M. Assarar, D. Scida, R. Ayad, and X.-L. Gong, Compos. Struct., 152, 259 (2016).CrossRefGoogle Scholar
  25. 25.
    V. Geethamma, R. Asaletha, N. Kalarikkal, and S. Thomas, Resonance, 19, 821 (2014).CrossRefGoogle Scholar
  26. 26.
    I. C. Finegan, G. G. Tibbetts, and R. F. Gibson, Compos. Sci. Technol., 63, 1629 (2003).CrossRefGoogle Scholar
  27. 27.
    C. Subramanian, S. B. Deshpande, and S. Senthilvelan, Adv. Compos. Mater., 20, 319 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Chandra, S. P. Singh, and K. Gupta, J. Compos. Tech. Res., 25, 1 (2003).Google Scholar
  29. 29.
    R. Chandra, S. P. Singh, and K. Gupta, J. Sound Vib., 262, 475 (2003).CrossRefGoogle Scholar
  30. 30.
    M. Z. Rahman, K. Jayaraman, and B. R. Mace, Polym. Compos., doi:10.1002/pc.24486 (2017).Google Scholar
  31. 31.
    “Flaxtape Technical Guide”, Available at http://www.lineo.eu/#!products accessed 02 February 2015.Google Scholar
  32. 32.
    L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 83, 193 (2016).CrossRefGoogle Scholar
  33. 33.
    L. Yan, N. Chouw, and K. Jayaraman, Compos. Pt. B-Eng., 56, 296 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276, 1 (2000).CrossRefGoogle Scholar
  35. 35.
    K. L. Pickering, M. G. A. Efendy, and T. M. Le, Compos. Pt. A-Appl. Sci. Manuf., 83, 98 (2015).CrossRefGoogle Scholar
  36. 36.
    D. B. Dittenber and H. V. GangaRao, Compos. Pt. A-Appl. Sci. Manuf., 43, 1419 (2012).CrossRefGoogle Scholar
  37. 37.
    “LINEO-advanced Flax”, Available at http://www.lineo.eu/accessed 05 October 2016.Google Scholar
  38. 38.
    S. Kazmi, R. Das, and K. Jayaraman, J. Mater. Process. Technol., 214, 2375 (2014).CrossRefGoogle Scholar
  39. 39.
    MATLAB R2013b. The MathWorks Inc., Natick, Massachusetts, 2013.Google Scholar
  40. 40.
    S. Chauhan, A. Karmarkar, and P. Aggarwal, J. Appl. Polym. Sci., 114, 2421 (2009).CrossRefGoogle Scholar
  41. 41.
    J. Liang, R. Li, and S. Tjong, J. Thermoplast. Compos. Mater., 13, 12 (2000).CrossRefGoogle Scholar
  42. 42.
    R. Chandra, S. P. Singh, and K. Gupta, Compos. Struct., 46, 41 (1999).CrossRefGoogle Scholar
  43. 43.
    K. Joseph, S. Thomas, and C. Pavithran, J. Reinf. Plast. Compos., 12, 139 (1993).CrossRefGoogle Scholar
  44. 44.
    Y. Gao, Y. Li, Y. Hong, H. Zhang, and X. He, Polym. Polym. Compos., 19, 119 (2011).Google Scholar
  45. 45.
    R. Adams and M. Maheri, J. Alloys Compd., 355, 126 (2003).CrossRefGoogle Scholar
  46. 46.
    S. J. Hwang and R. F. Gibson, J. Compos. Mater., 26, 2585 (1992).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Md Zillur Rahman
    • 1
  • Krishnan Jayaraman
    • 1
  • Brian Richard Mace
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations