Fibers and Polymers

, Volume 17, Issue 12, pp 1969–1976 | Cite as

Preparation of PAN-based electrospun nanofiber webs containing Ni-ZnO as high performance visible light photocatalyst

  • Roya Sedghi
  • Mohammad Reza Nabid
  • Mastaneh Shariati
  • Mohammad Behbahani
  • Hamid Reza Moazzami


The one dimensional (1D) Ni-ZnO nanoparticles have been synthesized by a simple hydrothermal method. A novel photocatalyst of nanostructured Ni-ZnO which immobilized on polyacrylonitrile nanofibers were successfully fabricated using electrospinnig technique. The structures of nanofibers were characterized by various techniques including Scanning Electron Microscope (SEM), X-ray powder Diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis diffuse reflectance (DR) and thermogravimetric analys (TGA). The Ni-ZnO/PAN nanofibers photodegradation efficiency was optimized with factorial design method in order to act highly effective in the photocatalytic degradation of Methyle orange (MO). The highest decolorizing efficiencies using introduced material were achieved by 0.8 g l -1 of catalyst and 10 mg l -1 of MO at natural pH under visible light irradiation. The obtained results exhibited that Ni-ZnO/PAN nanofibers have high visible light photocatalitic activities. Overall, the presented material can be used as an efficient, low cost and healthily secure photocatalyst in the field of water treatment.


Photocatalyst Photodegradation Ni-ZnO/PAN Nanofibers Water samples 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Hilal, A. H. Zyoud, N. Zaatar, C. Ali, G. Campet, D. Park, and I. Saadeddin, J. Hazard. Mater., 173, 318 (2009).Google Scholar
  2. 2.
    H. S. Hilal, G. Y. M. Al-Nour, A. Zyoud, M. H. Helal, and I. Saadeddin, Solid State Sci., 12, 578 (2010).CrossRefGoogle Scholar
  3. 3.
    A. H. Zyoud and H. S. Hilal, “Water Purification”, pp. 203–226, Nova Science Publishing, New York, 2009.Google Scholar
  4. 4.
    H. S. Hilal, G. Y. M. Nour, and A. Zyoud, “Water Purification”, pp.227–246, Nova Science Publishing, New York, 2009.Google Scholar
  5. 5.
    J. Yun, D. Jin, Y. S. Lee, and H. I. Kim, Mater. Lett., 64, 2431 (2010).CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, C. Shao, L. Zhang, X. Li, and Y. Liu, J. Colloid Interface Sci., 351, 57 (2010).CrossRefGoogle Scholar
  7. 7.
    T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Polymer, 50, 3031 (2009).CrossRefGoogle Scholar
  8. 8.
    J. Richardson, A. J. Matchett, J. M. Coulthard, S. Gibbon, and C. Wilson, and C. Watson, Chem. Eng. Res. Des., 78, 39 (2000).CrossRefGoogle Scholar
  9. 9.
    G. T. Lim, K. H. Kim, J. Park, S. H. Ohk, J. H. Kim, and D. L. Cho, J. Ind. Eng. Chem., 16, 723 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Wang, L. Xiao, Q. Luo, X. Li, J. An, and Y. Duan, J. Hazard. Mater., 192, 150 (2011).CrossRefGoogle Scholar
  11. 11.
    N. Negishi, K. Takeuchi, and T. Ibusuki, Appl. Surf. Sci., 121, 417 (1997).CrossRefGoogle Scholar
  12. 12.
    J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, and J. Li, ACS Appl. Mater. Interface, 4, 171 (2012).CrossRefGoogle Scholar
  13. 13.
    H. Usui, J. Phys. Chem. C, 111, 9060 (2007).CrossRefGoogle Scholar
  14. 14.
    P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, Nanotechnology, 15, 320 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Cui, C. Wang, G. Liu, H. Yang, S. Wu, and T. Wang, Mater Lett., 65, 2284 (2011).CrossRefGoogle Scholar
  16. 16.
    J. Song, Y. Zhang, C. Xu, W. Wu, and Z. L. Wang, Nano Lett., 11, 2829 (2011).CrossRefGoogle Scholar
  17. 17.
    N. Sangkhaprom, P. Supaphol, and V. Pavarajarn, Ceram. Int., 36, 357 (2010).CrossRefGoogle Scholar
  18. 18.
    D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).CrossRefGoogle Scholar
  19. 19.
    K. Jayaraman, M. Kotaki, Y. Zhang, X. Mo, and S. Ramakrishna, J. Nanosci. Nanotechnol., 4, 52 (2004).Google Scholar
  20. 20.
    R. Dersh, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, Polym. Adv. Technol., 16, 276 (2005).CrossRefGoogle Scholar
  21. 21.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  22. 22.
    D. H. Tong, P. D. Tran, X. T. T. Pham, V. B. Pham, T. T. T. Le, M. C. Dang, and C. J. M. V. Rijn, Adv. Nat. Sci-Nanosci. Nanotechnol., 1, 015011 (2010).CrossRefGoogle Scholar
  23. 23.
    E. P. Lee and Y. Xia, Nano Res., 1, 129 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Venkatesan, C. B. Fizgerald, J. G. Lunney, and J. M. D. Coey, Phys. Rev. Lett., 93, 177206-1 (2004).Google Scholar
  25. 25.
    X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, and W. Z. Shi, Appl. Phys. Lett., 88, 062508 (2006).CrossRefGoogle Scholar
  26. 26.
    S. K. Lim, S. K. Lee, S. H. Hwang, and H. Kim, Macromol. Mater. Eng., 291, 1265 (2006).CrossRefGoogle Scholar
  27. 27.
    C. Drew, X. Liu, D. Ziegler, X. Y. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, and J. Kumar, Nano Lett., 3, 143 (2003).CrossRefGoogle Scholar
  28. 28.
    C. Cheng, G. Xu, H. Zhang, and Y. Luo, Mater Lett., 62, 1617 (2008).CrossRefGoogle Scholar
  29. 29.
    M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, and K. I. Goldberg, J. Am. Chem. Soc., 128, 12048 (2006).CrossRefGoogle Scholar
  30. 30.
    O. Metin, V. Mazumder, S. Özkar, and S. Sun, J. Am. Chem. Soc., 132, 1468 (2010).CrossRefGoogle Scholar
  31. 31.
    E. Tang, B. Tian, E. Zheng, C. Fu, and G. Cheng, Chem. Eng. Commun., 195, 479 (2008).CrossRefGoogle Scholar
  32. 32.
    M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, and Y. Liu, J. Hazard. Mater., 225, 155 (2012).CrossRefGoogle Scholar
  33. 33.
    E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari, and L. G. Sneddon, J. Am. Chem. Soc., 128, 7748 (2006).CrossRefGoogle Scholar
  34. 34.
    C. Y. Su, J. Liu, C. L. Shao, and Y. C. Liu, J. Non-Cryst. Solids, 357, 1488 (2011).CrossRefGoogle Scholar
  35. 35.
    W. D. Wang, P. Serp, P. Kalck, and J. L. Faria, Appl. Catal., 56, 305 (2005).CrossRefGoogle Scholar
  36. 36.
    X. X. Xue, W. Ji, Z. Mao, Z. S. Li, W. D. Ruan, B. Zhao, and J. R. Lombardi, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 95, 213 (2012).CrossRefGoogle Scholar
  37. 37.
    J. Fan, X. Hu, Z. Xie, K. Zhang, and J. Wang, Chem. Eng. J., 179, 44 (2012).CrossRefGoogle Scholar
  38. 38.
    S. K. Kansal, M. Singh, and D. Sud, J. Hazard. Mater., 141, 581 (2007).CrossRefGoogle Scholar
  39. 39.
    J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, and P. Wu, Surf. Coat. Technol., 204, 205 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Roya Sedghi
    • 1
  • Mohammad Reza Nabid
    • 1
  • Mastaneh Shariati
    • 1
  • Mohammad Behbahani
    • 1
  • Hamid Reza Moazzami
    • 1
  1. 1.Department of PolymerFaculty of Chemistry, Shahid Beheshti UniversityTehranIran

Personalised recommendations