Fibers and Polymers

, Volume 17, Issue 7, pp 1000–1006 | Cite as

Indigo dyeing onto ramie fabric via microbial reduction: Reducing power evaluation of some bacterial strains isolated from fermented indigo vat

  • Younsook Shin
  • Kyunghee Son
  • Dong Il YooEmail author


This research is to examine the reducing power of bacterial single strain and the mixture of strains. Four strains of Dietzia sp. KDB1 (KC433534), Nesterenkonia sp. KDB2 (KC433535), Nesterenkonia sp. KDB3 (KC433536), and Nesterenkonia sp. KDB4 (KC433537) separated from the fermented indigo vat were cultivated in aerobic condition. Natural indigo of the niram powder obtained from the water extract of Polygonum tinctorium and synthetic indigo purchased was used after sterilization. Natural and synthetic indigo samples were reduced with the strains in an incubator. Oxidation/reduction potential and pH of the mixture of indigo and strain(s) solutions were measured at the same intervals of elapsed time. Dyeing test was applied to evaluate the reduction power of bacterial strains isolated. Ramie fabric was used for the indigo dyeing and its color strength was determined from the reflectance at 660 nm and expressed as K/S values by using a spectroscope. CIELAB coordinates were measured with the same spectroscope and H V/C values were obtained by using the conversion program. All the strains showed reducing power onto natural and synthetic indigo samples. With the elapsed time, dye-uptake was increased up to maximum dye-uptake, and then decreased. The potential was dropped rapidly around −500 mV and then changed very slightly maintaining lower than −400 mV. The pH measured was decreased with the elapsed time. All the hue values obtained were of bluish purple (PB) shade. On the reducing power represented as dye-uptake, KDB1 strain was the highest among the strains selected for natural indigo and KDB3 strain for synthetic indigo. KDB2 showed the lowest for both of natural and synthetic indigo. Mixture of strains shortened the start time of reduction and that of maximum dye-uptake than any single strain.


Indigo Reduction Bacterial strain Fermentation Biotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. H. Clark, C. J. Cooksey, M. A. M. Daniels, and R. Withnall, Endeavour, 17, 191 (1993).CrossRefGoogle Scholar
  2. 2.
    R. S. Blackburn, T. Bechtold, and P. John, Coloration Technol., 125, 193 (2009).CrossRefGoogle Scholar
  3. 3.
    A. Roessler and X. Jin, Dyes Pigment., 59, 223 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Song, H. Imanaka, K. Imamura, K. Kajitani, and K. Nakanishi, J. Biosci. Bioeng., 110, 281 (2010).CrossRefGoogle Scholar
  5. 5.
    D. Cardon, 24, 253 (2012).Google Scholar
  6. 6.
    A. Roessler, D. Crettenand, O. Dossenbach, W. Marte, and P. Rys, Electrochim. Acta, 47, 1989 (2002).CrossRefGoogle Scholar
  7. 7.
    M. A. Kulandainanthan, A. Muthukumaran, K. Patil, and R. B. Chavan, Dyes Pigment., 73, 47 (2007).CrossRefGoogle Scholar
  8. 8.
    K. Son, Y. Shin, and D. I. Yoo, J. Korean Soc. Cloth. Text., 34, 508 (2010).CrossRefGoogle Scholar
  9. 9.
    K. Son, Y. Shin, and D. I. Yoo, J. Korean Soc. Cloth. Ind., 13, 263 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Roessler, O. Dossenbach, and P. Rys, J. Electrochem. Soc., 150, D1 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Roessler, D. Crettenand, O. Dossenbach, W. Marte, and P. Rys, Electrochem. Acta, 47, 1989 (2002).CrossRefGoogle Scholar
  12. 12.
    R. S. Blackburn and A. Harvey, Environ. Sci. Technol., 38, 4034 (2004).CrossRefGoogle Scholar
  13. 13.
    A. Vurema, P. John, M. Keskitalo, M. A. Kulandainathan, and F. Marken, Dyes Pigment., 76, 542 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Vurema, P. John, M. Keskitalo, M. F. Mahon, M. A. Kulandainathan, and F. Marken, Phys. Chem. Chem. Phys., 11, 1816 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Meksi, M. B. Ticha, M. Kechida, and M. F. Mhenni, J. Cleaner Prod., 24, 149 (2012).CrossRefGoogle Scholar
  16. 16.
    A. N. Padden, V. M. Dillon, J. Edmonds, M. D. Collins, N. Alvarez, and P. John, Int. J. System. Bacteriol., 49, 1025 (1999).CrossRefGoogle Scholar
  17. 17.
    S. K. Nicholson and P. John, Appl. Microbiol. Biotechnol., 68, 117 (2005).CrossRefGoogle Scholar
  18. 18.
    S. K. Nicholson and P. John, Biocatal. Biotransfor., 22, 397 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Park, J. Y. Ryu, J. Seo, and H. G. Hur, J. Korean Soc. Appl. Biol. Chem., 55, 83 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Osimani, L. Aquilanti, G. Baldini, G. Silvestri, A. Butta, and F. Clementi, J. Ind. Microbiol. Biotechnol., 39, 1309 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Y. Kang and H. S. Ryu, J. Korean Soc. Dyers Finishers, 11, 242 (1999).Google Scholar
  22. 22.
    E. S. Choi, E. B. Lee, H. A. Choi, K. Son, G. J. Kim, and Y. Shin, Korean Soc. Biotechnol. Bioeng. J., 28, 295 (2013).Google Scholar
  23. 23.
    H. K. Krässig, “Cellulose Structure, Accessibility and Reactivity”, pp.76–123, Gordon and Breach Science Publishers, Philadelphia, USA, 1993.Google Scholar
  24. 24.
    I. Yumoto, K. Hirota, Y. Nodasaka, Y. Yokota, T. Hoshino, and K. Nakajima, Int. J. Sys. Evol. Microbiol., 54, 2379 (2004).CrossRefGoogle Scholar
  25. 25.
    S. Charkracorty, D. Helb, M. Burday, N. Cornell, and D. Alland, J. Microbiol. Meth., 69, 330 (2007).CrossRefGoogle Scholar
  26. 26.
    Y. V. D. Peer, S. Chapelle, and R. D. Wachter, Nucleic Acid Res., 24, 3381 (1996).CrossRefGoogle Scholar
  27. 27.
    K. Takeuchi and T. Ibusuki, Anal. Chem., 61, 619 (1989).CrossRefGoogle Scholar
  28. 28.
    S. Y. Lee, J. M. Oh, M. H. Baik, and Y. J. Lee, J. Mineralogical Soc. Korea, 24, 279 (2011).CrossRefGoogle Scholar
  29. 29.
    R. G. Compton, S. J. Perkin, D. P. Gamblin, J. Davis, F. Marken, A. N. Padden, and P. John, New J. Chem., 24, 179 (2000).CrossRefGoogle Scholar
  30. 30.
    P. John, Biologist, 53, 31 (2006).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Clothing & TextilesChonnam National UniversityGwangjuKorea
  2. 2.School of Polymer EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations