Skip to main content
Log in

Sound absorption properties of spiral vane electrospun PVA/nano particle nanofiber membrane and non-woven composite material

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this research, we fabricated a series of PVA membranes loaded with 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% ZrC and 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% TiO2 using a spiral vane electrospun machine respectively. There were 2 sizes of TiO2 nano particles: 10 nm and 200 nm. We tested sound absorption properties of needle-punched nonwovens as well as the composite of nano membranes and needle-punched nonwovens by an impedance tube at the frequency range from 500 Hz to 6500 Hz. Besides, we tested morphological characterization of nano membranes by scanning electron microscope (SEM) and crystalline properties by X-ray diffraction (XRD). We investigated the sound absorption properties of composites as well as the effect of ZrC, TiO2, nano particle sizes and cavity depth on sound absorption properties. Results showed that sound absorption properties of composites increased at the whole range of frequency compared to those of needle-punched nonwovens. When loaded with ZrC nano particles, sound absorption properties of composite shifted to a higher frequency region, and with increasing content of ZrC, sound absorption properties were better above 2500 Hz. However, when loaded with TiO2, sound absorption properties were better at lower frequency. With 3 wt.% TiO2, sound absorption coefficient reached the best at the frequency range from 500 Hz to 1500 Hz. Besides, 200 nm TiO2 was more conductive to the increase of sound absorption properties at lower frequency region compared to 10 nm TiO2. Sound absorption properties of composites with air back cavity shifted to a lower frequency region, too. SEM showed that there was nano particle aggregation when loaded TiO2 nano particles. XRD showed that ZrC nano particles loaded in PVA nano fiber retained their crystalline structure while TiO2 didn’t. It appeared from the results that nano particles had an effect on sound absorption materials, with different kinds and different sizes, sound absorption properties will improve in different ranges of frequency

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Park, D. S. Seo, and J. Lee, Cement. Concrete. Res., 35, 46 (2005).

    Google Scholar 

  2. S. W. Kang and J. M. Lee, J. Sound. Vib., 259, 209 (2003).

    Article  Google Scholar 

  3. J. Li and B. C. Guo, Nonwovens, 15, 8 (2007).

    Google Scholar 

  4. Z. Sun, Z. Shen, and S. Ma, Mater. Struct., 48, 387 (2015).

    Article  CAS  Google Scholar 

  5. G. A. Gates, J. L. Cobb, and R. B. D'Agostino, Arch. Otolaryngol., 119, 156 (1993).

    Article  CAS  Google Scholar 

  6. E. O. Talbott, R. C. Findlay, and L. H. Kuller, J. Occup. Environ. Med., 32, 690 (1990).

    CAS  Google Scholar 

  7. U. Rosenhall and V. Sundh, Noise & Health., 8, 88 (2006).

    Article  Google Scholar 

  8. J. Salmon, Z. Harmany, and C. A. Deledalle, J. Math. Imaging. Vis., 48, 279 (2014).

    Article  Google Scholar 

  9. D. A. Soltysik, D. Thomasson, and S. Rajan, J. Neurosci. Meth., 241, 18 (2015).

    Article  Google Scholar 

  10. C. R. Engelmann, J. P. Neis, and C. Kirschbaum, Ann. Surg., 259, 1025 (2014).

    Article  Google Scholar 

  11. A. Shankar, R. Rana, and S. Vijayan, Med. Phys., 42, 3252 (2015).

    Article  Google Scholar 

  12. C. Arenas, C. Leiva, and L. F. Vilches, Constr. Build. Mater., 95, 585 (2015).

    Article  Google Scholar 

  13. A. M. Willemsen and M. D. Rao, Noise. Control. Eng. J., 63, 424 (2015).

    Article  Google Scholar 

  14. J. Liu, W. Bao, and L. Shi, Appl. Acoust., 76, 128 (2014).

    Article  Google Scholar 

  15. M. Kucuk and Y. Korkmaz, Fiber. Polym., 16, 941 (2015).

    Article  CAS  Google Scholar 

  16. J. Liu, B. Zuo, and W. Gao, Acoust. Aust., 43, 129 (2015).

    Article  Google Scholar 

  17. C. M. Wu and M. H. Chou, Compos. Sci. Technol., 127, 127 (2016).

    Article  Google Scholar 

  18. X. Zhang, PST. J., 5, 658 (2014).

    Google Scholar 

  19. F. Shahani, P. Soltani, and M. Zarrebini, JEFF, 9, 84 (2014).

    Google Scholar 

  20. L. Huang, J. T. Arena, and S. S. Manickam, J. Membr. Sci., 460, 241 (2014).

    Article  CAS  Google Scholar 

  21. F. Zhang, X. Ma, and C. Cao, J. Power. Source, 251, 423 (2014).

    Article  CAS  Google Scholar 

  22. T. S. Kumar and M. R. Kumar, Development, 8, 21 (2015).

    Google Scholar 

  23. S. B. Yang, W. S. Choi, and J. M. Hyun, Textile Coloration & Finishing, 26, 195 (2014).

    Article  Google Scholar 

  24. H. Lu, F. Liang, and J. Gou, Smart. Mater. Struct., 23, 085034 (2014).

    Article  Google Scholar 

  25. A. Abdollahi, A. R. Mahdavian, and H. Salehi-Mobarakeh, Langmuir, 31, 10672 (2015).

    Article  CAS  Google Scholar 

  26. Y. Li, J. H. He, and Q. L. Sun, Therm. Sci., 19, 1461 (2015).

    Article  Google Scholar 

  27. H. Zhou, L. I. Bo, and G. S. Huang, J. Appl. Polym. Sci., 101, 2675 (2006).

    Article  CAS  Google Scholar 

  28. X. M. Cui, Y. S. Nam, and J.Y. Lee, Mater. Lett., 62, 61 (2008).

    Article  Google Scholar 

  29. E. Osei-Agyemang, J. F. Paul, and R. Lucas, Phys. Chem. Chem. Phys., 17, 21401 (2015).

    Article  CAS  Google Scholar 

  30. C. Gionco, M. C. Paganini, and E. Giamello, J. Phys. Chem. Lett., 5, 447 (2014).

    Article  CAS  Google Scholar 

  31. J. Ru, B. Kong, and Y. Liu, Mater. Lett., 139, 318 (2015).

    Article  CAS  Google Scholar 

  32. H. F. Xiang, Ph.D. Dissertation, UCAS, Beijing, 2011.

    Google Scholar 

  33. Y. X. Liu, S. Jun, and L. Zhenbo, NEFU, 29, 4 (2001).

    Google Scholar 

  34. S. Jiang, Y. Xu, and H. Zhang, Appl. Acoust., 73, 243 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqi Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Zuo, L. & Zuo, B. Sound absorption properties of spiral vane electrospun PVA/nano particle nanofiber membrane and non-woven composite material. Fibers Polym 17, 1090–1096 (2016). https://doi.org/10.1007/s12221-016-6324-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6324-z

Keywords

Navigation