Fibers and Polymers

, Volume 17, Issue 3, pp 402–407

The enhanced electrical conductivity of cotton fabrics via polymeric nanocomposites

  • Cem Güneşoğlu
  • Sinem Güneşoğlu
  • Suying Wei
  • Zhanhu Guo
Article
  • 113 Downloads

Abstract

Enhanced electrical conductivity of cotton fabrics coated with polyaniline (PANI) and PANI/carbon coated Fe (Fe@C) and carbon coated Co (Co@C) metal nanoparticles (NPs) composites were investigated. PANI/metal nanoparticle (NP) composites were fabricated with a surface initialized polymerization method and silanization helped with chemical bonding to cotton. The volume resistivity of the samples and structural characterizations were assessed by relevant methods. The results showed that enhanced electrical conductivity, thermal stability and magnetization were obtained via polymeric nanocomposites (PNC) and all these findings revealed that PANI/metal NP PNC coated cotton fabrics would exhibit good level electromagnetic shielding performance as a function of combined electrical conductivity and magnetization which is the objective of our future studies.

Keywords

Conductive polymer Metal nanoparticle Polymeric nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Ueng and K. B. Cheng, J. Text. Eng., 47, 70 (2001).CrossRefGoogle Scholar
  2. 2.
    C. H. Chen, K. C. Lee, J. H. Lin, and M. Koch, J. Mater. Process. Technol., 192-193, 549 (2007).CrossRefGoogle Scholar
  3. 3.
    L. Kessler and W. K. Fisher, J. Electrostat., 39, 253 (1997).CrossRefGoogle Scholar
  4. 4.
    H. G. Ortlek, C. Gunesoglu, G. Okyay, and Y. Turkoglu, Tekst. Konfeksiyon, 2, 90 (2012).Google Scholar
  5. 5.
    E. Hakansson, A. Kaynak, T. Lin, S. Nahavandi, T. Jones, and E. Hu, Synth. Met., 144, 21 (2004).CrossRefGoogle Scholar
  6. 6.
    S. K. Dhawan, N. Singh, and S. Venkatachalam, Synth. Met., 125, 389 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Kutanis, M. Karakisla, U. Akbulut, and M. Sacak, Compos. Pt. A-Appl. Sci. Manuf., 38, 609 (2007).CrossRefGoogle Scholar
  8. 8.
    E. Cetin, M. Karakisla, and M. Sacak, Fiber. Polym., 9, 255 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Trchova, P. Matejka, J. Brodinová, A. Kalendová, J. Prokeš, and J. Stejskal, Polym. Degrad. Stabil., 91, 114 (2006).CrossRefGoogle Scholar
  10. 10.
    P. C. Rodrigues, M. P. Cantao, P. Janissek, P. C. N. Scarpa, A. L. Mathias, L. P. Ramos, and M. A. B. Gomes, Eur. Polym. J., 38, 2213 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Blinova, J. Stejskal, M. Trchova, and J. Prokes, Polymer, 47, 4248 (2006).CrossRefGoogle Scholar
  12. 12.
    C. Zhou, J. Han, G. Song, and R. Guo, Eur. Polym. J., 44, 2850 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Taka, Synth. Met., 41, 1177 (1991).CrossRefGoogle Scholar
  14. 14.
    F. G. Souza, B. G. Soares, and J. C. Pinto, Macromol. Mater. Eng., 291, 463 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Anand, S. Palaniappan, and D. N. Sathyanarayana, Prog. Polym. Sci., 23, 993 (1998).CrossRefGoogle Scholar
  16. 16.
    W. Jia, R. Tchoudakov, E. Segal, M. Narkis, and A. Siegmann, Synth. Met., 132, 269 (2003).CrossRefGoogle Scholar
  17. 17.
    S. Wilson, R. P. J. Jourdain, Q. Zhang, R. A. Dorey, C. R. Bowen, M. Willander, Q. Ul Wahab, M. Willander, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. Van der Wijngaart, E. W. H. Jager, D. Carlsson, Z. Djinovic, and M. Wegener, Mater. Sci. Eng., R, 56, 1129 (2007).CrossRefGoogle Scholar
  18. 18.
    J. A. Smith, M. Josowicz, M. Engelhard, D. R. Baer, and J. Janata, Phys. Chem. Chem. Phys., 7, 3619 (2005).CrossRefGoogle Scholar
  19. 19.
    J. A. Smith, M. Josowicz, and J. Janata, Phys. Chem. Chem. Phys., 7, 3614 (2005).CrossRefGoogle Scholar
  20. 20.
    P. Kishore, B. Viswanathan, and T. Varadarajan, Nanoscale Res. Lett., 3, 14 (2007).CrossRefGoogle Scholar
  21. 21.
    X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, Prog. Polym. Sci., 36, 671 (2011).CrossRefGoogle Scholar
  22. 22.
    K. R. Reddy, K. P. Lee, Y. Lee, and A. I. Gopalan, Mater. Lett., 62, 1815 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Carmo, T. Roepke, C. Roth, A. M. D. Santos, J. G. R. Poco, and M. Linardi, J. Power Sources, 191, 330 (2009).CrossRefGoogle Scholar
  24. 24.
    G. Hongbo, Y. Huang, X. Zhang, Q. Wang, J. Zhu, L. Shao, N. Haldolaarachchige, D. P. Young, S. Wei, and Z. Guo, Polymer, 53, 801 (2012).CrossRefGoogle Scholar
  25. 25.
    U. A. Sevil, O. Guven, O. Birer, and S. Suzer, Synth. Met. 110, 175 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Radhakrishnan, R. Muthukannan, U. Kamatchi, C. R. K. Rao, and M. Vijayan, Indian J. Chem., 50A, 970 (2011).Google Scholar
  27. 27.
    J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, A. B. Karki, D. P. Young, and Z. Guo, J. Math. Chem., 21, 342 (2011).CrossRefGoogle Scholar
  28. 28.
    M. Trchova, P. Matejka, J. Brodinová, A. Kalendová, J. Prokeš, and J. Stejskal, Polym. Degrad. Stabil., 91, 114 (2006).CrossRefGoogle Scholar
  29. 29.
    P. C. Rodrigues, P. R. Janissek, and A. L. Mathias, Eur. Polym. J., 38, 2213 (2002).CrossRefGoogle Scholar
  30. 30.
    M. Xiao, L. Sun, J. Liu, Y. Li, and K. Gong, Polymer, 43, 2245 (2002).CrossRefGoogle Scholar
  31. 31.
    B. N. Jang and C. A. Wilkie, Polymer, 46, 2933 (2005).CrossRefGoogle Scholar
  32. 32.
    X. Chen, S. Wei, C. Gunesoglu, J. Zhu, C. S. Southworth, L. Sun, A. B. Karki, D. P. Young, and Z. Guo, Macromol. Chem. Phys., 211, 1775 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cem Güneşoğlu
    • 3
  • Sinem Güneşoğlu
    • 3
  • Suying Wei
    • 1
  • Zhanhu Guo
    • 2
  1. 1.Department of Chemistry and PhysicsLamar UniversityBeaumontUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Tennessee KnoxvilleKnoxvilleUSA
  3. 3.Textile Engineering DepartmentGaziantep UniversityGaziantepTurkey

Personalised recommendations