Fibers and Polymers

, Volume 16, Issue 2, pp 426–433 | Cite as

Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites

  • Filippo Pierini
  • Massimiliano Lanzi
  • Isidoro Giorgio Lesci
  • Norberto Roveri


The aim of this study was to examine the role of the nanofillers spatial arrangement in the electrical properties of hybrid organic-inorganic fibers. In this paper, we have presented experimental results for preparation of fibers with a nanometric diameter based on a polyaniline/poly(ethylene oxide) doped blend and geomimetic chrysotile nanotubes. The nanostructured material was prepared using electrospinning techniques. Electrospun fibers made by pristine polymers and by the same blend loaded with carbon nanotubes were used as reference materials to compare the structural, and electrical properties of the novel organic-inorganic material. Generally, electrical properties were improved by the addition of materials that have high conductivity. Electrospun fibers filled with a traditional insulator like chrysotile have shown higher electrical conductivity than the pristine materials. In order to fully understand how structural variations impact upon the electrical conductivity the materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), differential scanning calorimetry (DSC) and four-point probe method. The results suggest that the occurred electrical conductivity gain could be attributed to parallel orientation of the chrysotile nanotubes and higher crystallinity induced by the one-dimensional nanostructured filler materials. The obtained results bring us one step closer to using intrinsically conducting polymers (ICPs) in the creation of functionalized polymeric nanocomposites for nanotechnology.


Nanocomposites Conductive polymer Electrospinning Chrysotile Carbon nanotubes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, Prog. Polym. Sci., 36, 671 (2011).CrossRefGoogle Scholar
  2. 2.
    S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer, 46, 6128 (2005).CrossRefGoogle Scholar
  3. 3.
    A. T. Rajesh and D. Kumar, Sens. Actuators B-Chem., 136, 275 (2009).CrossRefGoogle Scholar
  4. 4.
    N. Gupta, S. Sharma, I. A. Mir, and D. Kumar, J. Sci. Ind. Res., 65, 549 (2006).Google Scholar
  5. 5.
    A. Z. Sadek, W. Wlodarski, K. Shin, R. B. Kaner, and K. Kalantar-Zadeh, Nanotechnology, 17, 4488 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Virji, J. D. Fowler, C. O. Baker, J. Huang, R. B. Kaner, and B. H. Weiller, Small, 1, 624 (2005).CrossRefGoogle Scholar
  7. 7.
    C. Dhand, P. R. Solanki, K. N. Sood, M. Datta, and B. D. Malhotra, Electrochem. Commun., 11, 1482 (2009).CrossRefGoogle Scholar
  8. 8.
    N. J. Pinto, A. T. Johnson, A. G. Macdiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson, and F. A. Miranda, Appl. Phys. Lett., 83, 4244 (2003).CrossRefGoogle Scholar
  9. 9.
    N. J. Pinto, R. Gonzalez, A. T. Johnson, and A. G. MacDiarmid, Appl. Phys. Lett., 89, 033505 (2006).CrossRefGoogle Scholar
  10. 10.
    M. Lanzi, L. Paganin, F. Pierini, F. Errani, and F. P. Di Nicola, React. Funct. Polym., 83, 33 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Xiong, Q. Wang, and H. Xia, Synth. Met., 146, 37 (2004).CrossRefGoogle Scholar
  12. 12.
    D. H. Park, M. Kim, M. S. Kim, D. C. Kim, H. Song, J. Kim, and J. Joo, Electrochem. Solid State Lett., 11, K69 (2008).CrossRefGoogle Scholar
  13. 13.
    J. A. Merlo and C. D. Frisbie, J. Phys. Chem. B, 108, 19169 (2004).CrossRefGoogle Scholar
  14. 14.
    S. K. Park, K. P. Dhakal, J. Kim, J. H. Kim, and H. Rho, Synth. Met., 161, 1088 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Long, Z. Chen, N. Wang, Z. Zhang, and M. Wan, Physica B, 325, 208 (2003).CrossRefGoogle Scholar
  16. 16.
    D. W. Hatchett and M. Josowicz, Chem. Rev., 108, 746 (2008).CrossRefGoogle Scholar
  17. 17.
    V. Mottaghitalab, X. Binbin, G. M. Spinks, and G. G. Wallace, Synth. Met., 156, 796 (2006).CrossRefGoogle Scholar
  18. 18.
    Z. Han, J. Zhang, X. Yang, H. Zhu, and W. Cao, Org. Electron., 11, 1449 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Zuo, W. Liu, C. Yao, X. Li, Y. Kong, X. Liu, H. Mao, and Y. Li, Chem. Eng. J., 228, 1092 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Liu, B. Guo, Q. Zou, M. Du, and D. Jia, Nanotechnology, 20, 205709 (2008).CrossRefGoogle Scholar
  21. 21.
    X. Sun, Y. Long, P. Wang, J. Sun, and J. Ma, React. Funct. Polym., 72, 323 (2012).CrossRefGoogle Scholar
  22. 22.
    R. Surya Murali, M. Padaki, T. Matsuura, M. S. Abdullah, and A. F. Ismail, Sep. Purif. Technol., 132, 187 (2014).CrossRefGoogle Scholar
  23. 23.
    N. F. Attia, M. M. Menemparabath, S. Arepalli, and K. E. Geckeler, Int. J. Hydrog. Energy, 38, 9251 (2013).CrossRefGoogle Scholar
  24. 24.
    C. Yang, P. Liu, and Y. Zhao, Electrochim. Acta, 55, 6857 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Falini, E. Foresti, I. G. Lesci, and N. Roveri, Chem. Commun., 14, 1512 (2002).CrossRefGoogle Scholar
  26. 26.
    G. Falini, E. Foresti, M. Gazzano, A. F. Gualtieri, M. Leoni, I. G. Lesci, and N. Roveri, Chem. Eur. J., 10, 3043 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Leoni, A. F. Gualtieri, and N. Roveri, J. Appl. Crystallogr., 37, 166 (2004).CrossRefGoogle Scholar
  28. 28.
    E. Foresti, M. F. Hochella Jr, H. Kornishi, I. G. Lesci, A. S. Madden, N. Roveri, and H. Xu, Adv. Funct. Mater., 15, 1009 (2005).CrossRefGoogle Scholar
  29. 29.
    E. Gazzano, E. Foresti, I. G. Lesci, M. Tomatis, C. Riganti, B. Fubini, N. Roveri, and D. Ghigo, Toxicol. Appl. Pharmacol., 3, 356 (2005).CrossRefGoogle Scholar
  30. 30.
    E. Gazzano, F. Turci, E. Foresti, M. G. Putzu, E. Aldieri, F. Silvagno, I. G. Lesci, M. Tomatis, C. Riganti, C. Romano, B. Fubini, N. Roveri, and D. Ghigo, Chem. Res. Toxicol., 20, 380 (2007).CrossRefGoogle Scholar
  31. 31.
    P. Sabatino, L. Casella, A. Granata, M. Iafisco, I. G. Lesci, E. Monzani, and N. Roveri, J. Colloid Interface Sci., 314, 389 (2007).CrossRefGoogle Scholar
  32. 32.
    E. Foresti, E. Fornero, I. G. Lesci, C. Rinaudo, T. Zuccheri, and N. Roveri, J. Hazard. Mater., 167, 1070 (2009).CrossRefGoogle Scholar
  33. 33.
    E. Borghi, M. Occhiuzzi, E. Foresti, I. G. Lesci, and N Roveri, Phys. Chem. Chem. Phys., 12, 227 (2010).CrossRefGoogle Scholar
  34. 34.
    I. G. Lesci, G. Balducci, F. Pierini, F. Soavi, and N. Roveri, Microporous Mesoporous Mat., 197, 8 (2014).CrossRefGoogle Scholar
  35. 35.
    N. Roveri, G. Falini, E. Foresti, G. Fracasso, I. G. Lesci, and P. Sabatino, J. Mater. Res., 21, 2711 (2006).CrossRefGoogle Scholar
  36. 36.
    S. Piperno, I. Kaplan-Ashiri, S. R. Cohen, R. Popovitz-Biro, H. D. Wagner, R. Tenne, E. Foresti, I. G. Lesci, and N. Roveri, Adv. Funct. Mater., 17, 3332 (2007).CrossRefGoogle Scholar
  37. 37.
    G. De Luca, A. Romeo, V. Villari, N. Micali, I. Fortran, E. Foresti, I. G. Lesci, N. Roveri, T. Zuccheri, and L. Monsù Scolaro, J. Am. Chem. Soc., 131, 6920 (2009).CrossRefGoogle Scholar
  38. 38.
    F. Pierini, E. Foresti, G. Fracasso, I. G. Lesci, and N. Roveri, Isr. J. Chem., 50, 484 (2010).CrossRefGoogle Scholar
  39. 39.
    R. Allen, Z. Bao, and G. G. Fuller, Nanotechnology, 24, 015709 (2013).CrossRefGoogle Scholar
  40. 40.
    Y. Gao, Z. Li, Z. Lin, L. Zhu, A. Tannenbaum, S. Bouix, and C. P. Wong, Nanotechnology, 23, 435706 (2012).CrossRefGoogle Scholar
  41. 41.
    K. Song, Y. Zhang, J. Meng, E. C. Green, N. Tajaddod, H. Li, and M. L. Minus, Materials, 6, 2543 (2013).CrossRefGoogle Scholar
  42. 42.
    M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman, and S. J. Kim, Nat. Commun., 3, 1661 (2012).Google Scholar
  43. 43.
    L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, and H. Peng, Adv. Mater., 23, 3730 (2011).CrossRefGoogle Scholar
  44. 44.
    J. Geng and T. Zeng, J. Am. Chem. Soc., 128, 16827 (2006).CrossRefGoogle Scholar
  45. 45.
    I. D. Norris, M. M. Shaker, F. K. Ko, and A. G. MacDiarmid, Synth. Met., 114, 109 (2000).CrossRefGoogle Scholar
  46. 46.
    S. Sundarrajan, R. Murugam, A. S. Nair, and S. Ramakrishna, Mater. Lett., 64, 2369 (2010).CrossRefGoogle Scholar
  47. 47.
    A. Bianco, C. Bertarelli, S. Frisk, J. F. Rabolt, M. C. Gallazzi, and G. Zerbi, Synth. Met., 157, 276 (2007).CrossRefGoogle Scholar
  48. 48.
    X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).CrossRefGoogle Scholar
  49. 49.
    Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin, and E. Zussman, Langmuir, 19, 7012 (2003).CrossRefGoogle Scholar
  50. 50.
    S. Kanagaraj, F. R. Varanda, T. V. Zhil’tsova, M. S. A. Oliveira, and J. A. O. Simoes, Compos. Sci. Technol., 67, 3071 (2007).CrossRefGoogle Scholar
  51. 51.
    M. Naebe, T. Lin. M. P. Staiger, L. Dai, and X. Wang, Nanotechnology, 19, 305702 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Filippo Pierini
    • 1
    • 2
  • Massimiliano Lanzi
    • 3
  • Isidoro Giorgio Lesci
    • 2
  • Norberto Roveri
    • 2
  1. 1.Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland
  2. 2.Department of Chemistry (G.Ciamician), Alma Mater StudiorumUniversity of BolognaBolognaItaly
  3. 3.Department of Industrial Chemistry (Toso Montanari), Alma Mater StudiorumUniversity of BolognaBolognaItaly

Personalised recommendations