Advertisement

Fibers and Polymers

, Volume 16, Issue 1, pp 46–53 | Cite as

Response surface methodology optimized dyeing of wool with cumin seeds extract improved with plasma treatment

  • Aminoddin Haji
  • Sayyed Sadroddin Qavamnia
Article

Abstract

In this study, the aqueous extract of Cuminum Ciminum L. seed was applied on wool as a novel natural colorant. Gas chromatography coupled with mass spectrometry was conducted to identify the composition of the extract. Response surface methodology and D-optimal design were employed to investigate and optimize the effects of three independent factors including mordant concentration, dyeing pH and temperature on the color strength of dyed samples. A statistical model was obtained to correlate between the amounts of three independent factors and color strength of dyed samples as the response. Low pressure plasma treatment using oxygen, argon, and their mixture was employed to improve the dyeability of wool fibers. The effect of different plasma treatments on the surface chemistry and morphology of wool fibers were studied using attenuated total reflectance-Fourier transform infrared spectroscopy and field emission scanning electron microscopy, respectively. The fastness properties of dyed samples were also investigated.

Keywords

Plasma Wool Natural dye Response surface methodology Gas chromatography-mass spectrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Khan, N. Iqbal, S. Adeel, M. Azeem, F. Batool, and I. A. Bhatti, Dyes Pigment., 103, 50 (2014).CrossRefGoogle Scholar
  2. 2.
    E. Koh and K. H. Hong, Dyes Pigment., 103, 222 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Sinha, P. D. Saha, and S. Datta, Dyes Pigment., 94, 212 (2012).CrossRefGoogle Scholar
  4. 4.
    A. Etemadifar, H. Dehghanizadeh, N. Nasirizadeh, and M. Rohani-Moghadam, Fiber. Polym., 15, 254 (2014).CrossRefGoogle Scholar
  5. 5.
    D. Das, D. B. Datta, and P. Bhattacharya, Cloth. Text. Res. J., 32, 93 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Shahid, Shahid-ul-Islam, and F. Mohammad, J. Cleaner Prod., 53, 310 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Sachan and V. Kapoor, Indian J. Tradit. Knowl., 6, 270 (2007).Google Scholar
  8. 8.
    S. Ratnapandian, L. Wang, S. M. Fergusson, and M. Naebe, J. Fib. Bioeng. Inf., 4, 267 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Haji, A. Mousavi Shoushtari, and M. Mirafshar, Color. Technol., 130, 37 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Haji and A. M. Shoushtari, J. Ind. Text., 62, 244 (2011).Google Scholar
  11. 11.
    D. Fakin, A. Ojstrsek, and S. C. Benkovic, J. Mater. Process. Technol., 209, 584 (2009).CrossRefGoogle Scholar
  12. 12.
    N. S. Iacobellis, P. Lo Cantore, F. Capasso, and F. Senatore, J. Agric. Food Chem., 53, 57 (2005).CrossRefGoogle Scholar
  13. 13.
    P. Hashemi, M. Shamizadeh, A. Badiei, A. Ghiasvand, and K. Azizi, Chromatographia, 70, 1147 (2009).CrossRefGoogle Scholar
  14. 14.
    R. Ravi, M. Prakash, and K. K. Bhat, Int. J. Food Prop., 16, 1048 (2013).CrossRefGoogle Scholar
  15. 15.
    P. B. Tayade and R. V. Adivarekar, J. Environ. Chem. Eng., 1, 1336 (2013).CrossRefGoogle Scholar
  16. 16.
    R. Semnani Rahbar and A. Haji, J. Appl. Polym. Sci., 130, 1337 (2013).CrossRefGoogle Scholar
  17. 17.
    W. Haddar, M. Ben Ticha, A. Guesmi, F. Khoffi, and B. Durand, J. Clean. Prod., 68, 114 (2014).CrossRefGoogle Scholar
  18. 18.
    W. Haddar, I. Elksibi, N. Meksi, and M. F. Mhenni, Ind. Crop. Prod., 52, 588 (2014).CrossRefGoogle Scholar
  19. 19.
    A. Haji, A. M. Shoushtari, and M. Abdouss, J. Macromol. Sci. Part A-Pure Appl. Chem., 51, 76 (2014).CrossRefGoogle Scholar
  20. 20.
    H. Barani, M. N. Broumand, A. Haji, and M. Kazemipur, J. Nat. Fibers, 9, 73 (2012).CrossRefGoogle Scholar
  21. 21.
    F. Haghiroalsadat, A. Vahidi, M. Sabour, M. Azimzadeh, M. Kalantar, and M. Sharafadini, J. Shahid Sadoughi Uni. Med. Sci., 19, 472 (2011).Google Scholar
  22. 22.
    C. Wang and Y. Qiu, J. Appl. Polym. Sci., 123, 1000 (2011).CrossRefGoogle Scholar
  23. 23.
    C. W. Kan and C. W. M. Yuen, Plasma Process. Polym., 3, 627 (2006).CrossRefGoogle Scholar
  24. 24.
    C.-W. Kan and C.-W. M. Yuen, Text. Prog., 39, 121 (2007).CrossRefGoogle Scholar
  25. 25.
    K. H. Kale and A. N. Desai, Indian J. Fibre Text. Tes., 36, 289 (2011).Google Scholar
  26. 26.
    R. Shishoo, “Plasma Technologies for Textiles”, Woodhead Publishing, Cambridge, 2007.CrossRefGoogle Scholar
  27. 27.
    H. Ghouila, N. Meksi, W. Haddar, M. F. Mhenni, and H. B. Jannet, Ind. Crop. Prod., 35, 31 (2012).CrossRefGoogle Scholar
  28. 28.
    S. Haar, E. Schrader, and B. M. Gatewood, Cloth. Text. Res. J., 31, 97 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Textile Engineering Department, Birjand BranchIslamic Azad UniversityBirjandIran

Personalised recommendations