Advertisement

Fibers and Polymers

, Volume 15, Issue 8, pp 1656–1668 | Cite as

Dye removal using polymeric adsorbent from wastewater containing mixture of two dyes

  • Niyaz Mohammad Mahmoodi
  • Omeleila Masrouri
  • Farhood Najafi
Article

Abstract

In this paper, poly(amido primary-secondary amine) (PAPSA) as a high capacity polymeric adsorbent was synthesized. Dye removal ability of PAPSA from single and binary systems was investigated. The functional groups of PAPSA were studied using Fourier transform infrared (FTIR). Acid Blue 92 (AB92), Direct Red 23 (DR23), and Direct Red 81 (DR81) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, dye concentration, and pH on dye removal was evaluated. It was found that adsorption of dyes onto PAPSA showed Langmuir isotherm. The maximum dye adsorption capacity (Q 0) of PAPSA was 10000 mg/g, 12500 mg/g, and 10000 mg/g for AB92, DR23, and DR81, respectively. Adsorption kinetic of dyes followed pseudo-second order kinetics. Dye desorption tests showed that the dye release of 85 % for AB92, 91 % for DR23 and 89 % for DR81 were achieved in aqueous solution at pH 12. The results showed that the PAPSA as a polymeric adsorbent with high dye removal ability might be a suitable alternative to remove dyes from colored wastewater.

Keywords

Poly(amido primary-secondary amine) Synthesis Dye removal Binary system Dye desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Mahmoodi, J. Taiwan Inst. Chem. Eng., 44, 321 (2013).CrossRefGoogle Scholar
  2. 2.
    N. M. Mahmoodi, J. Mol. Catal. A-Chem., 366, 254 (2013).CrossRefGoogle Scholar
  3. 3.
    N. M. Mahmoodi, Mater. Res. Bull., 48, 4255 (2013).CrossRefGoogle Scholar
  4. 4.
    S. Kiran, S. Ali, and M. Asgher, B. Environ. Contam. Tox., 90, 208 (2013).CrossRefGoogle Scholar
  5. 5.
    Z. Aksu, Process Biochem., 40, 997 (2005).CrossRefGoogle Scholar
  6. 6.
    M. S. Uddin, J. Zhou, Y. Qu, J. Guo, P. Wang, and L. Zhao, B. Environ. Contam. Tox., 79, 440 (2007).CrossRefGoogle Scholar
  7. 7.
    N. M. Mahmoodi, J. Environ. Eng., 139, 1382 (2013).CrossRefGoogle Scholar
  8. 8.
    N. M. Mahmoodi, J. Environ. Eng., 139, 1368 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Tabak, E. Eren, B. Afsin, and B. Caglar, J. Hazard. Mater., 161, 1087 (2009).CrossRefGoogle Scholar
  10. 10.
    V. Ponnusami, V. Gunasekar, and S. N. Srivastava, J. Hazard. Mater., 169, 119 (2009).CrossRefGoogle Scholar
  11. 11.
    A. El Nemr, O. Abdelwahab, A. El-Sikaily, and A. Khaled, J. Hazard. Mater., 161, 102 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Khaled, A. El Nemr, A. El-Sikaily, and O. Abdelwahab, J. Hazard. Mater., 165, 100 (2009).CrossRefGoogle Scholar
  13. 13.
    H. Parab, M. N. Sudersanan, T. Shenoy, and B. V. Pathare, Clean-Soil Air Water, 37, 963 (2009).CrossRefGoogle Scholar
  14. 14.
    B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, and S. Zheng, Chem. Eng. J., 151, 19 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Atar, A. Olgun, and F. Çolak, Eng. Life Sci., 8, 499 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. Bulut and H. Aydin, Desalination, 194, 259 (2006).CrossRefGoogle Scholar
  17. 17.
    A. Özcan, E. M. Öncü, and A. S. Özcan, Colloid. Surface. A, 277, 90 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Zheng, B. C. Pan, Q. J. Zhang, W. M. Zhang, B. J. Pan, Y. H. Han, Q. R. Zhang, W. Du, Z. W. Xu, and Q. X. Zhang, Sep. Purif. Technol., 57, 250 (2007).CrossRefGoogle Scholar
  19. 19.
    B. C. Pan, Q. X. Zhang, F. W. Meng, X. T. Li, X. Zhang, J. Z. Zheng, W. M. Zhang, B. J. Pan, and J. L. Chen, Environ. Sci. Technol., 39, 3308 (2005).CrossRefGoogle Scholar
  20. 20.
    N. M. Mahmoodi, F. Najafi, and A. Neshat, Ind. Crop. Prod., 42, 119 (2013).CrossRefGoogle Scholar
  21. 21.
    G. Bayramoglu, B. Altintas, and M. Y. Arica, Chem. Eng. J., 152, 339 (2009).CrossRefGoogle Scholar
  22. 22.
    X. Zhang, A. Li, Z. Jiang, and Q. Zhang, J. Hazard. Mater., 137, 1115 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. Yu, Y. Y. Zhuang, and Z. H. Wang, J. Colloid Interface Sci., 242, 288 (2001).CrossRefGoogle Scholar
  24. 24.
    L. G. T. dos Reis, N. F. Robaina, W. F. Pacheco, and R. J. Cassella, Chem. Eng. J., 171, 532 (2011).CrossRefGoogle Scholar
  25. 25.
    X. Guo, G. T. Fei, H. Su, and L. D. Zhang, J. Mater. Chem., 21, 8618 (2011).CrossRefGoogle Scholar
  26. 26.
    L. Zhang, H. Wang, W. Yu, Z. Su, L. Chai, J. Li, and Y. Shi, J. Mater. Chem., 22, 18244 (2012).CrossRefGoogle Scholar
  27. 27.
    S. Huang, L. Yang, M. Liu, S. L. Phua, W. A. Yee, W. Liu, R. Zhou, and X. Lu, Langmuir, 29, 1238 (2013).CrossRefGoogle Scholar
  28. 28.
    K. K. H. Choy, J. F. Porter, and G. McKay, J. Chem. Eng. Data, 45, 575 (2000).CrossRefGoogle Scholar
  29. 29.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  30. 30.
    I. Langmuir, J. Am. Chem. Soc., 39, 1848 (1917).CrossRefGoogle Scholar
  31. 31.
    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  32. 32.
    H. M. F. Freundlich, Z. Phys. Chem. (Leipzig), 57, 385 (1906).Google Scholar
  33. 33.
    M. J. Tempkin and V. Pyzhev, Acta Physiochim. USSR, 12, 217 (1940).Google Scholar
  34. 34.
    S. Lagergren, K. Sven. Vetenskapsakad. Handl., 24, 1 (1898).Google Scholar
  35. 35.
    Y. S. Ho, Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 1995.Google Scholar
  36. 36.
    W. J. Weber and J. C. Morris, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963).Google Scholar
  37. 37.
    D. L. Pavia, G. M. Lampman, and G. S. Kaiz, “Introduction to Spectroscopy: A Guide for Students of Organic Chemistry”, W.B. Saunders Company, New York, 1987.Google Scholar
  38. 38.
    G. Crini and P. M. Badot, Prog. Polym. Sci., 33, 399 (2008).CrossRefGoogle Scholar
  39. 39.
    G. Crini, C. Robert, F. Gimbert, B. Martel, O. Adam, and F. D. Giorgi, J. Hazard. Mater., 153, 96 (2008).CrossRefGoogle Scholar
  40. 40.
    M. N. V. R. Kumar, React. Funct. Polym., 46, 1 (2000).CrossRefGoogle Scholar
  41. 41.
    M. Uğurlu, Micropor. Mesopor. Mater., 119, 276 (2009).CrossRefGoogle Scholar
  42. 42.
    E. Demirbas, M. Kobya, S. Oncel, and S. Sencan, Bioresource Technol., 84, 291 (2002).CrossRefGoogle Scholar
  43. 43.
    N. K. Amin, Desalination, 223, 152 (2008).CrossRefGoogle Scholar
  44. 44.
    Y. C. Kim, I. Kim, S. C. Rengraj, and J. Yi, Environ. Sci. Technol., 38, 924 (2004).CrossRefGoogle Scholar
  45. 45.
    A. Özcan and A. S. Özcan, J. Hazard. Mater., 125, 252 (2005).CrossRefGoogle Scholar
  46. 46.
    S. Senthilkumaar, P. Kalaamani, K. Porkodi, P. R. Varadarajan, and C. V. Subburaam, Bioresource Technol., 97, 1618 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Niyaz Mohammad Mahmoodi
    • 1
  • Omeleila Masrouri
    • 1
  • Farhood Najafi
    • 1
  1. 1.Department of Environmental ResearchInstitute for Color Science and TechnologyTehranIran

Personalised recommendations