Fibers and Polymers

, Volume 15, Issue 7, pp 1500–1506 | Cite as

Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films

  • Vijay BahetiEmail author
  • Rajesh Mishra
  • Jiri Militky
  • B. K. Behera


In the present study, nanofibrils of cellulose are extracted from waste jute fibers using high energy planetary ball milling process in wet condition. The rate of refinement of untreated fibers having non-cellulosic contents was found slower than treated fibers due to strong holding of fiber bundles by non-cellulosic contents. At the end of three hours of wet milling, untreated fibers were refined to the size of 850 nm and treated fibers were refined to the size of 443 nm. In the subsequent stage, composite films of poly lactic acid (PLA) were prepared by solvent casting with 3 wt% loading of untreated jute nanofibrils, treated jute nanofibrils and microcrystalline cellulose. The influence of non-cellulosic contents on mechanical properties of PLA films are investigated based on results of tensile test, dynamic mechanical analysis and differential scanning calorimetry. The maximum improvement was observed in case of treated jute nanofibril/PLA composite film where initial modulus and tensile strength increased by 207.69 % and 168.67 %, respectively as compared to neat PLA film. These improvements are attributed to the increased interaction of treated jute nanofibrils with PLA matrix due to their higher precentage of cellulosic contents and mechanically activated surface.


High energy ball milling Textile waste fibers Nanocellulose Jute nanofibrils Biodegradable nanocomposite film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Klemm, D. Schumann, F. Kramer, N. Hebler, M. Hornung, H. Schmauder, and S. Marsch, Adv. Polym. Sci., 205, 49 (2006).CrossRefGoogle Scholar
  2. 2.
    T. Zimmermann, N. Bordeanu, and E. Strub, Carbohyd. Polym., 79, 1086 (2010).CrossRefGoogle Scholar
  3. 3.
    A. J. Svagan, M. A. Samir, and L. A. Berglund, Adv. Mater., 20, 1263 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Fukuzumi, T. Saito, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 1584 (2009).CrossRefGoogle Scholar
  6. 6.
    H. Wang, L. Huang, and L. Yafei, Fiber. Polym., 10, 442 (2009).CrossRefGoogle Scholar
  7. 7.
    V. Baheti, V. V. T. Padil, J. Militky, M. Cernik, and R. Mishra, J. Fiber Bioeng. Informat., 6, 175 (2013).CrossRefGoogle Scholar
  8. 8.
    M. F. Rosa, E. S. Medeiros, J. A. Malmonge, K. S. Gregorski, D. F. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts, and S. H. Imam, Carbohyd. Polym., 81, 83 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Pasquini, E. D. M. Teixeira, A. A. D. S. Curvelo, M. N. Belgacem, and A. Dufresne, Ind. Crop Prod., 32, 486 (2010).CrossRefGoogle Scholar
  10. 10.
    R. Zuluaga, J. L. Putaux, J. Cruz, J. Velez, I. Mondragon, and P. Ganan, Carbohyd. Polym., 76, 51 (2009).CrossRefGoogle Scholar
  11. 11.
    R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao, Carbohyd. Polym., 76, 94 (2009).CrossRefGoogle Scholar
  12. 12.
    B. Wang and M. Sain, Compos. Sci. Technol., 67, 2521 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Alemdar and M. Sain, Bioresource Technology, 99, 1664 (2008).CrossRefGoogle Scholar
  14. 14.
    N. Reddy and Y. Yang, Polymer, 46, 5494 (2005).CrossRefGoogle Scholar
  15. 15.
    D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, Compos. Sci. Technol., 63, 1287 (2003).CrossRefGoogle Scholar
  16. 16.
    J. Gassan and A. K. Bledzki, J. Appl. Polym. Sci., 71, 623 (1999).CrossRefGoogle Scholar
  17. 17.
    T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, Compos. Part A-Appl. S., 41, 499 (2010).CrossRefGoogle Scholar
  18. 18.
    D. Ray, B. K. Sarkar, R. K. Basak, and A. K. Rana, J. Appl. Polym. Sci., 94, 123 (2004).CrossRefGoogle Scholar
  19. 19.
    M. S. Islam, K. L. Pickering, and N. J. Foreman, Compos. Part A-Appl. S., 41, 596 (2010).CrossRefGoogle Scholar
  20. 20.
    T. H. Nam, S. Ogihara, N. H. Tung, and S. Kobayashi, Compos. Part B-Eng., 42, 164 (2011).CrossRefGoogle Scholar
  21. 21.
    V. Baheti and J. Militky, Fiber. Polym., 14, 133 (2013).CrossRefGoogle Scholar
  22. 22.
    V. Baheti, R. Abbasi, J. Militky, and J. Dobias, Vlakna a Textil, 19, 10 (2012).Google Scholar
  23. 23.
    V. Baheti, J. Militky, and M. Marsalkova, Polym. Compos., 34, 2133 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Liu, L. You, H. Jin, and W. Yu, Fiber. Polym., 14, 389 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Choi and J. Lee, Fiber. Polym., 13, 217 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Akerholm, B. Hinterstoisser, and L. Salmén, Carbohyd. Res., 339, 569 (2004).CrossRefGoogle Scholar
  27. 27.
    R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura, J. Mater. Sci., 43, 775 (2008).CrossRefGoogle Scholar
  28. 28.
    L. Petersson and K. Oksman, Compos. Sci. Technol., 66, 2187 (2006).CrossRefGoogle Scholar
  29. 29.
    S. Cho, H. Park, Y. Yun, and H. Jin, Fiber. Polym., 14, 1001 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vijay Baheti
    • 1
    Email author
  • Rajesh Mishra
    • 1
  • Jiri Militky
    • 1
  • B. K. Behera
    • 2
  1. 1.Department of Material EngineeringTechnical University of LiberecLiberecCzech Republic
  2. 2.Department of Textile TechnologyIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations