Advertisement

Fibers and Polymers

, Volume 15, Issue 4, pp 839–846 | Cite as

Effect of CaCO3 contents on the properties of polyethylene nanocomposites sheets

  • Haydar U. ZamanEmail author
  • M. D. H. Beg
Article

Abstract

Nanocomposites of high-density polyethylene/linear low-density polyethylene (HDPE/LLDPE) filled with untreated and surface treated nano-calcium carbonate (nCC) were prepared. The influence of isopropyl tri-(dioctylpyrophosphato) titanate (JN114) treatment of nCC on the morphology, mechanical, crystallization and flow properties of the nanocomposites were studied. The results of scanning electron microscopy (SEM) showed that JN114 treated nCC was better dispersion in the matrix than the untreated one. A fine dispersion of the treated nanoparticles in the nanocomposites was observed by transmission electron microscopy (TEM). The FTIR spectrum analysis revealed that the JN114 could change the surface properties of nCC, resulting in greater hydrophobicity of the surface and enhanced compatibility with nonpolar matrices. The tensile elastic modulus (E c ) and Izod impact strength (SIC) of nanocomposites increased with the increasing of nCC content while tensile fracture strength (σ b ) decreased. The JN114 treated nanocomposites had superior mechanical properties to those of the untreated ones. The compatibility of these nanocomposites was examined by DSC to estimate melting point (T m ) and crystallization temperature (T c ). Furthermore, the melt flow index (MFI) of the nanocomposite materials were measured. It was found that the MFI decreased with the addition of weight fraction of the nCC particles.

Keywords

HDPE/LLDPE blend Nano-CaCO3 Morphology Mechanical properties Crystallization Melt flow index (MFI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alexandre and P. Dubois, Mater. Sci. Eng. R: Reports, 28, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    G. Galgali, S. Agarwal, and A. Lele, Polymer, 45, 6059 (2004).CrossRefGoogle Scholar
  3. 3.
    S. M. Zebarjad, S. A. Sajjadi, and M. Tahani, J. Mater. Process. Technol., 175, 446 (2006).CrossRefGoogle Scholar
  4. 4.
    Y. Huang, G. Chen, Z. Yao, H. Li, and Y. Wu, Eur. Polym. J., 41, 2753 (2005).CrossRefGoogle Scholar
  5. 5.
    K. Motha, U. Hippi, K. Hakkala, M. Peltonen, and V. Ojanpera, J. Appl. Polym. Sci., 94, 1094 (2004).CrossRefGoogle Scholar
  6. 6.
    P. Supaphol, W. Harnsiri, and J. Junkasem, J. Appl. Polym. Sci., 92, 201 (2004).CrossRefGoogle Scholar
  7. 7.
    W. F. Maddams and J. Woolmington, Makromol. Chem., 186, 1665 (1985).CrossRefGoogle Scholar
  8. 8.
    M. Marilda and A. Leni, Polym. Degrad. Stab., 93, 43 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Liang, K. Wang, C. Tang, Q. Zhang, D. Rongni, and F. Qiang, J. Chem. Phys., 128, 174902 (2008).CrossRefGoogle Scholar
  10. 10.
    M. R. Schishesaz and A. A. Donatelli, Polym. Eng. Sci., 21, 869 (1981).CrossRefGoogle Scholar
  11. 11.
    R. Nuria, J. F. Vega, N. Jesus, and J. Martínez-Salazar, J. Appl. Polym. Sci., 114, 420 (2009).CrossRefGoogle Scholar
  12. 12.
    Q. Fu, Y. Men, and G. Strobl, Polymer, 44, 1927 (2003).CrossRefGoogle Scholar
  13. 13.
    J. N. Hay and X.-Q. Zhou, Polymer, 34, 2282 (1993).CrossRefGoogle Scholar
  14. 14.
    L. Colin, P. Shan, B. P. Joao, Soares, and P. Alexander, Polymer, 44, 177 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Kurian, K. E. George, D. Francis, and Joseph, Eur. Polym. J., 28, 113 (1992).CrossRefGoogle Scholar
  16. 16.
    S. Deepak, Polym. Plast. Technol. Eng., 45, 879 (2006).CrossRefGoogle Scholar
  17. 17.
    T. Agustín, C. Nelson, and M. Facundo, J. Plast. Film Sheet., 22, 29 (2006).CrossRefGoogle Scholar
  18. 18.
    T. Kuranchi and T. Ohta, J. Mater. Sci., 19, 1699 (1984).CrossRefGoogle Scholar
  19. 19.
    J. Jancar, A. T. Dibenedetto, and A. Dianselmo, Polym. Eng. Sci., 33, 559 (1993).CrossRefGoogle Scholar
  20. 20.
    P. Eteläaho, S. Haveri, and P. Järvelä, Polym. Comp., 32, 464 (2011).CrossRefGoogle Scholar
  21. 21.
    K. Sangmin, J. K. Kwang, K. Hyun, P. K. Patit, J. K. Tae, K. L. Young, H. L. Byung, and C. Soonja, Polymer, 43, 6901 (2002).CrossRefGoogle Scholar
  22. 22.
    K. J. Kim and J. L. White, Polym. Eng. Sci., 39, 2189 (1999).CrossRefGoogle Scholar
  23. 23.
    Y. Tanaka and J. L. White, J. Appl. Polym. Sci., 28, 1481 (1983).CrossRefGoogle Scholar
  24. 24.
    T. Kataoka, T. Kitano, M. Sasahara, and K. Nishijima, Rheol. Act., 17, 149 (1978).CrossRefGoogle Scholar
  25. 25.
    K. J. Kim and J. L. White, J. Non-Newtonian Fluid Mech., 66, 257 (1996).CrossRefGoogle Scholar
  26. 26.
    V. P. Chacko, F. E. Karasz, and R. Farris, J. Polym. Eng. Sci., 22, 968 (1982).CrossRefGoogle Scholar
  27. 27.
    V. P. Chacko, R. J. Farris, and F. E. Karasz, J. Appl. Polym. Sci., 28, 2701 (1983).CrossRefGoogle Scholar
  28. 28.
    G. Banhegyi and F. E. Karasz, J. Polym. Sci: Polym. Phys., 24, 209 (1986).CrossRefGoogle Scholar
  29. 29.
    Y. Wang, J. Lu, and G. Wang, J. Appl. Polym. Sci., 64, 1275 (1997).CrossRefGoogle Scholar
  30. 30.
    ASTM Standard D 638-01, “Test Methods for Tensile Properties of Plastics”, In: Annual Book of ASTM Standard, Ed., Am. Soc. Test. Mater., 8, 45 (2002).Google Scholar
  31. 31.
    R. G. Alamo, W. W. Graessley, R. Krishnamoorti, D. J. Lohse, J. D. Londono, and L. Mandelkem, Macromol., 30, 61 (1997).CrossRefGoogle Scholar
  32. 32.
    ISO 1133, Plastics-Determination of the Melt Mass-flow rate (MFR) and the Melt Volume-flow Rate (MVR) of Thermoplastics, Turkey, 1997.Google Scholar
  33. 33.
    X. Tong, H. C. Zhao, T. Tang, Z. L. Feng, and B. T. Huang, J. Polym. Eng. Sci., 38, 1351 (1998).CrossRefGoogle Scholar
  34. 34.
    J. Z. Liang, J. Appl. Polym. Sci., 104, 1692 (2007).CrossRefGoogle Scholar
  35. 35.
    B. Pukanszky and E. Fekete, Adv. Polym. Sci., 139, 109 (1999).CrossRefGoogle Scholar
  36. 36.
    J. Z. Liang and R. K. Y. Li, Polym. Compos., 19, 698 (1998).CrossRefGoogle Scholar
  37. 37.
    L. Nicolais and M. Narkis, Polym. Eng. Sci., 11, 194 (1971).CrossRefGoogle Scholar
  38. 38.
    G. Goujon and B. Mutaftschiev, J. Colloid Interface Sci., 57, 148 (1978).CrossRefGoogle Scholar
  39. 39.
    S. Wu, Polymer, 26, 1855 (1985).CrossRefGoogle Scholar
  40. 40.
    L. Lapcik, P. Jindrova, B. Lapcikova, R. Tamblyn, R. Greenwood, and N. Rowson, J. Appl. Polym. Sci., 110, 2742 (2008).CrossRefGoogle Scholar
  41. 41.
    G. Wypych, “Handbook of Fillers”, 2nd ed., p.465, Chem. Tec. Publishing, Toronto, Canada, 2000.Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Chemical & Natural Resources EngineeringUniversity of Malaysia Pahang, Gambang, KuantanPahang Darul MakmurMalaysia

Personalised recommendations