Fibers and Polymers

, Volume 15, Issue 4, pp 687–697 | Cite as

Influence of chemically modified short hemp fiber structure on biosorption process of Zn2+ ions from waste water

  • Marija Vukcevic
  • Biljana Pejic
  • Mila Lausevic
  • Ivana Pajic-Lijakovic
  • Mirjana Kostic


Short hemp fibers, acquired as a waste from textile industry, were used as an efficient biosorbent for removal of zinc ions from polluted water. In order to obtain the material with better sorption properties, short hemp fibers were subjected to oxidative and alkali treatment. The following factors that may influence the sorption properties of short hemp fibers were examined: fiber structure and morphology were characterized by iodine sorption, water retention and scanning electron microscopy, while specific surface area was determined by BET method. Additionally, the amount of carboxyl groups was determined by calcium-acetate method, and the point of zero charge of the short hemp fibers samples was determined by the solid addition method. Biosorption of zinc ions was evaluated through the total uptake capacity, equilibrium and kinetic data. Obtained data were analyzed by nonlinear Langmuir and Freundlich isotherms, as well as pseudo-first and pseudo-second order kinetic models, and the best fitting model was chosen using Akaike information criterion. Chemical modification, used in this work, leads to structural and morphological changes of short hemp fibers, and improvement of their sorption properties. It was found that sorption properties of short hemp fibers are predominantly influenced by surface acidity and the amount of functional groups, while fiber structure and specific surface area have a secondary role in the biosorption of zinc ions. Akakike information criterion values showed that biosorption of zinc ions on all tested hemp fiber samples obey the pseudo-second order adsorption kinetics, while experimental isotherm data fit better with Langmuir model. Biosorption of zinc ions on the hemp fibers is a predominantly chemical process, which mainly follows the mechanism of ion exchange on acidic functional groups, and occurs through the fast surface adsorption, intraparticle diffusion and final equilibrium stage.


Biosorption Short hemp fibers Heavy metals Adsorption isotherms Kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Igwe and A. A. Abia, Afr. J. Biotechnol., 5, 1167 (2006).Google Scholar
  2. 2.
    W. S. Wan Ngah and M. A. K. M. Hanafiah, J. Environ. Sci., 20, 1168 (2008).CrossRefGoogle Scholar
  3. 3.
    J. C. Igwe and A. A. Abia, Electron. J. Biotechnol., 10, 536 (2007).CrossRefGoogle Scholar
  4. 4.
    S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, Water Res., 33, 2469 (1999).CrossRefGoogle Scholar
  5. 5.
    B. Volesky, Water Res., 41, 4017 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Demirbas, J. Hazard. Mater., 157, 220 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Witek-Krowiak, R. G. Szafran, and S. Modelski, Desalination, 265, 126 (2011).CrossRefGoogle Scholar
  8. 8.
    N. Basci, E. Kocadagistan, and B. Kocadagistan, Desalination, 164, 135 (2004).CrossRefGoogle Scholar
  9. 9.
    Z. Al-Qodah, Desalination, 196, 164 (2006).CrossRefGoogle Scholar
  10. 10.
    A. C. H. Barreto, M. M. Costa, A. S. B. Sombra, D. S. Rosa, R. F. Nascimento, S. E. Mazzetto, and P. B. A. Fechine, J. Polym. Environ., 18, 523 (2010).CrossRefGoogle Scholar
  11. 11.
    B. Pejic, M. Vukcevic, M. Kostic, and P. Skundric, J. Hazard. Mater., 164, 146 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Conrad and H. C. Bruun Hansen, Bioresour. Technol., 98, 89 (2007).CrossRefGoogle Scholar
  13. 13.
    S. R. Shukla and R. S. Pai, Bioresour. Technol., 96, 1430 (2005).CrossRefGoogle Scholar
  14. 14.
    B. M. Pejic, M. M. Kostic, P. D. Skundric, and J. Z. Praskalo, Bioresour. Technol., 99, 7152 (2008).CrossRefGoogle Scholar
  15. 15.
    R. Brazis, J. Czekalski, D. Kozakiewicz, M. Michalak, and M. Stasiak, Fibers Text. East. Eur., 8, 35 (2000).Google Scholar
  16. 16.
    J. Czekalski, D. Kozakiewicz, M. Michalak, and M. Stasiak, Fibers Text. East. Eur., 8, 22 (2000).Google Scholar
  17. 17.
    H. Akaike, Trans. Autom. Control., 19, 716 (1974).CrossRefGoogle Scholar
  18. 18.
    E. Gayawan, S. B. Adebayo, R. A. Ipinyomi, and B. A. Oyejola, Demogr. Res., 22, 211 (2010).CrossRefGoogle Scholar
  19. 19.
    K. V. Kumar, K. Porkodi, and F. Rocha, J. Hazard. Mater., 151, 794 (2008).CrossRefGoogle Scholar
  20. 20.
    W. Garner, “Textile Laboratory Manuel. Fibres”, Vol. 5, pp.52–113, Heywood Books, London, 1967.Google Scholar
  21. 21.
    M. L. Nelson, M.-A. Rousselle, S. J. Cangemi, and P. Trouard, Text. Res. J., 40, 872 (1970).CrossRefGoogle Scholar
  22. 22.
    B. Siroka, M. Noisternig, U. J. Griesser, and T. Bechtold, Carbohyd. Res., 343, 2194 (2008).CrossRefGoogle Scholar
  23. 23.
    U. Stankovi Elesini, A. Pavko Čuden, and A. F. Richards, Acta Chim. Slov., 49, 815 (2002).Google Scholar
  24. 24.
    ASTDM D 2402-78, Standard Test Method for Water Retention of Fibers (Centrifuge Method), 1978.Google Scholar
  25. 25.
    J. Praskalo, M. Kostic, A. Potthast, G. Popov, B. Pejic, and P. Skundric, Carbohyd. Polym., 77, 791 (2009).CrossRefGoogle Scholar
  26. 26.
    E. J. Parks and R. L. Hebert, Tappi. J., 55, 1510 (1972).Google Scholar
  27. 27.
    A. E. Ofomaja and Y. S. Ho, Biores. Tech., 99, 5411 (2008).CrossRefGoogle Scholar
  28. 28.
    E. Ayranci and N. Hoda, Chemosphere, 60, 1600 (2005).CrossRefGoogle Scholar
  29. 29.
    K. V. Kumar, J. Hazard. Mater., B137, 1538 (2006).CrossRefGoogle Scholar
  30. 30.
    Y. S. Ho, Carbon, 42, 2113 (2004).CrossRefGoogle Scholar
  31. 31.
    B. H. Hameed, J. M. Salman, and A. L. Ahmad, J. Hazard. Mater., 163, 121 (2009).CrossRefGoogle Scholar
  32. 32.
    A. E. Ofomaja, Chem. Eng. J., 143, 85 (2008).CrossRefGoogle Scholar
  33. 33.
    P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, and J. Liu, Water Res., 44, 1489 (2010).CrossRefGoogle Scholar
  34. 34.
    M. Ghaedi, B. Sadeghian, S. N. Kokhdan, A. A. Pebdani, R. Sahraei, A. Daneshfar, and A. Mihandoost, Mater. Sci. Eng., C, 33, 2258 (2013).CrossRefGoogle Scholar
  35. 35.
    M. Ghaedi, S. Heidarpour, S. N. Kokhdan, R. Sahraie, A. Daneshfar, and B. Brazesh, Powder Technol., 228, 18 (2012).CrossRefGoogle Scholar
  36. 36.
    H. Wang, R. Postle, R. Kessler, and W. Kessler, Text. Res. J., 73, 664 (2003).CrossRefGoogle Scholar
  37. 37.
    G. Buschle Diller, C. Fanter, and F. Loth, Text. Res. J., 69, 244 (1999).CrossRefGoogle Scholar
  38. 38.
    M. Kostic, B. Pejic, and P. Skundric, Bioresour. Technol., 99, 94 (2008).CrossRefGoogle Scholar
  39. 39.
    T. Kreze, S. Jeler, and S. Strnad, Mater. Res. Innov., 5, 277 (2005).CrossRefGoogle Scholar
  40. 40.
    D. Fakin, V. Golob, K. Stana Kleinschek, and A. Majcen Le Marechal, Text. Res. J., 76, 448 (2006).CrossRefGoogle Scholar
  41. 41.
    S. Tunali and T. Akar, J. Hazard. Mater., B131, 137 (2006).CrossRefGoogle Scholar
  42. 42.
    L. Norton, K. Baskaran, and T. McKenzie, Adv. Environ. Res., 8, 629 (2004).CrossRefGoogle Scholar
  43. 43.
    R. J. E. Martins, R. Pardo, and R. A. R. Boaventura, Water Res. 38, 693 (2004).CrossRefGoogle Scholar
  44. 44.
    B. M. Pejic, M. M. Vukcevic, I. D. Pajic-Lijakovic, M. D. Lausevic, and M. M. Kostic, Chem. Eng. J., 172, 354 (2011).CrossRefGoogle Scholar
  45. 45.
    M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, J. Hazard. Mater., 170, 969 (2009).CrossRefGoogle Scholar
  46. 46.
    A. E. Ofomaja, React. Funct. Polym., 70, 879 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marija Vukcevic
    • 1
  • Biljana Pejic
    • 1
  • Mila Lausevic
    • 1
  • Ivana Pajic-Lijakovic
    • 1
  • Mirjana Kostic
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations