Fibers and Polymers

, Volume 15, Issue 3, pp 547–552 | Cite as

Polyester fiber production using virgin and recycled PET

  • J. C. Tapia-PicazoEmail author
  • J. G. Luna-Bárcenas
  • A. García-Chávez
  • R. Gonzalez-Nuñez
  • A. Bonilla-Petriciolet
  • A. Alvarez-Castillo


In this study, the design and construction of an extrusion equipment with spinning fiber devices has been developed to produce polyester fiber from virgin and recycled polyethylene terephthalate (PET). Several operating parameters (i.e., pressure, temperature, feed flow rate, extrusion speed and extruder design) have been analyzed to identify the best process conditions. In particular, this study has focused on a detailed analysis for the processing of recycled raw material for polyester textile fiber applications considering the variability of the process and identifying alternatives to minimize the impact on the quality parameters such as the fiber diameter and mechanical specifications. The experimental results were compared with the values calculated using a theoretical model, which has been developed for these particular cases. The mathematical analysis of the mass flow showed a very good agreement with respect to the experimental data, where there was a percentage difference < 3 %. It was found that the fiber diameter is a function of intrinsic viscosity (VI) or melt flow index (MFI). Finally, the mechanical properties of the fibers were evaluated and results indicated that the fiber with higher average molecular weight showed higher tenacity and lower Young’s modulus values.


Recycled PET Extrusion process Spinning fiber Textile PET fiber PET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Kuczenski and R. Geyer, Resour. Conserv. Recycl., 54, 1161 (2010).CrossRefGoogle Scholar
  2. 2.
    F. La Mantia and M. Vinci, Polym. Degrad. Stab., 45, 121 (1994).CrossRefGoogle Scholar
  3. 3.
    F. Daw-Ming, S. K. Huang, and L. Jiunn-Yih, J. Appl. Polym. Sci., 61, 261 (1996).CrossRefGoogle Scholar
  4. 4.
    I. A. Abu-Isa, C. B. Jaynes, and J. F. O’Gara, J. Appl. Polym. Sci., 59, 1957 (1996).CrossRefGoogle Scholar
  5. 5.
    B. Saha and A. K. Ghoshal, Chem. Eng. J., 111, 39 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. Zou, N. Reddy, and Y. Yang, Compos. Part B-Eng., 42, 763 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Fraternali, V. Ciancia, R. Chechile, G. Rizzano, L. Feo, and L. Incarnato, Compos. Struct., in press, Corrected proof (2011).Google Scholar
  8. 8.
    D. Foti, Constr. Build. Mater., 25, 1906 (2011).CrossRefGoogle Scholar
  9. 9.
    N. Torres, J. J. Robin, and B. Boutevin, Eur. Polym. J., 36, 2075 (2000).CrossRefGoogle Scholar
  10. 10.
    A. Oromiehie and A. Mamizadeh, Polym. Int., 53, 728 (2004).CrossRefGoogle Scholar
  11. 11.
    J. Martín and M. Rojas, Patent and Trademark Spanish office (OEPM), 2226512 (2005).Google Scholar
  12. 12.
    K. S. Seo and J. D. Cloyd, J. Appl. Polym. Sci., 42, 845 (1991).CrossRefGoogle Scholar
  13. 13.
    A. Cata, G. Bandur, I. Balcu, D. Buzatu, C. Tanasie, and D. Rosu, Chem. Bull. “POLITEHNICA” Univ. (Timişoara), 52, 143 (2007).Google Scholar
  14. 14.
    G. Franceschini and S. Macchietto, Ind. Eng. Chem. Res., 46, 220 (2007).CrossRefGoogle Scholar
  15. 15.
    S. D. Mancini, J. A. S. Schwartzman, A. R. Nogueira, D. A. Kagohara, and M. Zanin, J. Clean Prod., 18, 92 (2010).CrossRefGoogle Scholar
  16. 16.
    E. Pirzadeh, A. Zadhoush, and M. Haghighat, J. Appl. Polym. Sci., 106, 1544 (2007).CrossRefGoogle Scholar
  17. 17.
    H. Saeid, S. Taheri, S. Zadhoush, and A. Mehrabani-Zeinabad, J. Appl. Polym. Sci., 103, 2304 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Samperi, C. Puglisi, R. Alicata, and G. Montaudo, Polym. Degrad. Stab., 83, 3 (2004).CrossRefGoogle Scholar
  19. 19.
    K. Gurudatt, P. de A. K. Rakshit, and M. K. Bardhan, J. Appl. Polym. Sci., 90, 3536 (2003).CrossRefGoogle Scholar
  20. 20.
    M. Abbasi, M. R. M. Mojtahedi, and A. Khosroshahi, J. Appl. Polym. Sci., 103, 3972 (2007).CrossRefGoogle Scholar
  21. 21.
    D. M. Juriga and R. E. Allen, U. S. Patent and Trademark Office Pre-grant Publication, US20080292831 (2008).Google Scholar
  22. 22.
    J. Brownstein and K. Brownstein, Patent Cooperation Treaty Application, US20110030557A1 (2011).Google Scholar
  23. 23.
    M. W. Coates, M. H. Kierzkowski, P. J. Gibbons, and A. J. Eiden, Patent Cooperation Treaty Application, WO10063079 (2010).Google Scholar
  24. 24.
    M. C. Thiry, AATCC Rev., 20 (2009).Google Scholar
  25. 25.
    R. G. Dale, Int. Nonwovens J., 9, 15 (2000).Google Scholar
  26. 26.
    L. Incarnato, P. Scarfato, L. Di Maio, and D. Acierno, Polymer, 41, 6825 (2000).CrossRefGoogle Scholar
  27. 27.
    F. Awaja and D. Pavel, Eur. Polym. J., 41, 1453 (2005).CrossRefGoogle Scholar
  28. 28.
    A. García and J. C. Tapia, Master Thesis, Technological Institute of Aguascalientes, Aguascalientes, México, 2008.Google Scholar
  29. 29.
    S. D. Mancini and M. Zanin, Mater. Res., 2, 33 (1999).CrossRefGoogle Scholar
  30. 30.
    G. Wróbel and R. Bagsik, J. Achiev. Mater. Manuf. Eng., 43, 178 (2010).Google Scholar
  31. 31.
    M. Frounchi, M. Mehrabzadeh, and R. Ghiaee, Iran. Polym. J., 6, 269 (1997).Google Scholar
  32. 32.
    M. A. Silva-Spinacé and M. A. De Paoli, J. Appl. Polym. Sci., 80, 20 (2000).CrossRefGoogle Scholar
  33. 33.
    J. Lyons, C. Li, and F. Ko, Polymer, 45, 7597 (2004).CrossRefGoogle Scholar
  34. 34.
    H. Rajabinejad, R. Khajavi, A. Rashidi, N. Mansouri, and M. E. Yazdanshenas, Int. J. Envir. Res., 3, 663 (2009).Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. C. Tapia-Picazo
    • 1
    Email author
  • J. G. Luna-Bárcenas
    • 1
  • A. García-Chávez
    • 2
  • R. Gonzalez-Nuñez
    • 3
  • A. Bonilla-Petriciolet
    • 2
  • A. Alvarez-Castillo
    • 4
  1. 1.Cinvestav-Querétaro, Libramiento Norponiente 2000Fracc. Real de JuriquillaQuerétaro, QuerétaroMéxico
  2. 2.Chemical Engineering and Biochemical DepartmentTechnological Institute of Aguascalientes, AguascalientesAguascalientesMéxico
  3. 3.University Center of Exact Sciences and Engineering, Chemical Engineering DepartmentUniversity of GuadalajaraGuadalajara, JaliscoMéxico
  4. 4.Division of Graduate Studies and Research, Chemical and Biochemical Engineering Department, Electromechanical Department and Basic Sciences DepartmentTechnological Institute of Zacatepec, ZacatepecMorelosMéxico

Personalised recommendations