Advertisement

Fibers and Polymers

, Volume 15, Issue 1, pp 145–152 | Cite as

Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications

  • Hongyi Liu
  • Yong Zhang
  • Juming YaoEmail author
Article

Abstract

Recently, cellulose-based superabsorbent has attracted attention as a promising material in many fields because of its rich sources and outstanding properties of biodegradability and biocompatibility. This study examines the potential application of a novel flax yarn waste-g-poly(acrylic acid-co-acrylamide) (FYW/PAA) superabsorbent in the absorbent core layer of sanitary napkins. Acrylic acid (AA) and acrylamide (AM) were grafted onto the pretreated flax yarn waste (PFYW) by free-radical graft copolymerization in homogeneous aqueous solution. The synthesis conditions of the FYW/PAA superabsorbent and its application performance for sanitary napkin were investigated. The results showed that, under the optimal synthesis conditions, the water absorbency of the prepared FYW/PAA reached 787.6 g/g in deionized water, 109.5 g/g in 0.9 wt% NaCl solution and 206.5 g/g in artificial blood solution. The composited absorbent core layer containing the FYW/PAA achieved the similar artificial blood solution absorbency of 192.6 g/g and retention of 83.9 wt% to those of the marketed sanitary napkin products. Meanwhile, a weight residue of 53.6 wt% was attained for the FYW/PAA after being buried in soil for 90 d.

Keywords

Absorbent core layer for sanitary napkin Flax yarn waste Superabsorbent Water absorbency & retention, Biodegradability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. H. Ma, Q. Li, Q. Y. Yue, B. Y. Gao, X. Xu, and Q. Q. Zhong, Bioresource Technol., 102, 2853 (2011).CrossRefGoogle Scholar
  2. 2.
    X. Y. Liang, Y. Zhang, L. Liu, and J. M. Yao, Bioresources, 8, 130 (2013).Google Scholar
  3. 3.
    L. Wu and M. Z. Liu, Polym. Adv. Technol., 19, 785 (2008).CrossRefGoogle Scholar
  4. 4.
    R. M. Islam, Y. G. Hu, S. S. Mao, J. Mao, A. E. Eneji, and X. Xue, J. Sci. Food. Agric., 91, 1998 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Kosemund, H. Schlatter, J. L. Ochsenhirt, E. L. Krause, D. S. Marsman, and G. N. Erasala, Regul. Toxicol. Pharm., 53, 81 (2009).CrossRefGoogle Scholar
  6. 6.
    Y. Zhao, H. J. Su, L. Fang, and T. W. Tan, Polymer, 46, 5368 (2005).CrossRefGoogle Scholar
  7. 7.
    D. Q. Wu, T. Wang, B. Lu, X. D. Xu, S. X. Chen, X. J. Jiang, X. Z. Zhang, and R. X. Zhou, Langmuir, 24, 10306 (2008).CrossRefGoogle Scholar
  8. 8.
    G. R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh, and M. J. Zouhuriaan, Eur. Polym. J., 40, 1399 (2004).CrossRefGoogle Scholar
  9. 9.
    J. Wang and A. Wang, Polym. Eng. Sci., 50, 1019 (2010).CrossRefGoogle Scholar
  10. 10.
    M. J. Zohuriaan-Mehr and K. Kabiri, Iran. Polym. J., 17, 451 (2008).Google Scholar
  11. 11.
    Y. Zhang, F. Wu, L. Liu, and J. M. Yao, Carbohyd. Polym., 91, 277 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Q. Dond, Q. Xu, Y. Y. Li, S. B. Mo, S. J. Cai, and L. J. Liu, Colloid. Surface. B., 66, 26 (2008).CrossRefGoogle Scholar
  13. 13.
    C. H. Yan, J. M. Zhang, Y. X. Lv, J. Yu, J. Wu, J. Zhang, and J. S. He, Biomacromolecules, 10, 2013 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Li, J. P. Zhang, and A. Q. Wang, Bioresource Technol., 98, 119 (2007).Google Scholar
  15. 15.
    G. Peng, S.M. Xu, Y. Peng, J.D. Wang, and L.C. Zheng, Bioresource Technol., 99, 444 (2008).CrossRefGoogle Scholar
  16. 16.
    W. Dahou, D. Ghemati, A. Oudia, and D. Aliouche, Biochem. Eng. J., 48, 187 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Sadeghi and H. Hosseinzadeh, J. Appl. Polym. Sci., 108, 1142 (2008).CrossRefGoogle Scholar
  18. 18.
    X. W. Peng, J. L. Ren, L. X. Zhong, F. Peng, and R. C. Sun, J. Agric. Food Chem., 59, 8208 (2011).CrossRefGoogle Scholar
  19. 19.
    X. W. Peng, L. X. Zhong, J. L. Ren, and R. C. Sun, J. Agric. Food Chem., 60, 3909 (2012).CrossRefGoogle Scholar
  20. 20.
    H. C. Ge, W. Pang, and D. K. Luo, Carbohyd. Polym., 66, 372 (2006).CrossRefGoogle Scholar
  21. 21.
    L. Wu, M. Z. Liu, and R. Liang, Bioresource Technol., 99, 547 (2008).CrossRefGoogle Scholar
  22. 22.
    M. Chu, S. Q. Zhu, H. M. Li, Z. B. Huang, and S. Q. Li, J. Appl. Polym. Sci., 102, 5137 (2006).CrossRefGoogle Scholar
  23. 23.
    A. Pourjavadi and M. S. Amini-Fazl, Polym. Int., 56, 283 (2007).CrossRefGoogle Scholar
  24. 24.
    H. Salimi, A. Pourjavadi, F. Seidi, P. E. Jahromi, and R. Soleyman, J. Appl. Polym. Sci., 117, 3228 (2010).Google Scholar
  25. 25.
    F. Aloulou, S. Boufi, and J. Labidi, Sep. Purif. Technol., 52, 332 (2006).CrossRefGoogle Scholar
  26. 26.
    J. H. Poplin, R. P. Swatloski, J. D. Holbrey, S. K. Spear, A. Metlen, M. Gratzel, M. K. Nazeeruddin, and R. D. Rogers, Chem. Commun, 20, 2025 (2007).CrossRefGoogle Scholar
  27. 27.
    A. Kelne and E. H. Schacht, J. Control. Release, 101, 13 (2005).CrossRefGoogle Scholar
  28. 28.
    M. Nogi and H. Yano, Adv. Mater., 20, 1849 (2008).CrossRefGoogle Scholar
  29. 29.
    F. Wu, Y. Zhang, L. Liu, and J. M. Yao, Carbohyd. Polym., 87, 2519 (2012).CrossRefGoogle Scholar
  30. 30.
    R. J. Li, J. M. Fei, Y. R. Cai, Y. F. Li, J. Q. Feng, and J. M. Yao, Carbohyd. Polym., 76, 94 (2009).CrossRefGoogle Scholar
  31. 31.
    J. H. Trivedi, J. Appl. Polym. Sci., 3, 1 (2013).Google Scholar
  32. 32.
    D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Chem. Int. Ed., 44, 3358 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Zhejiang Provincial Top Key Discipline of New Materials and Process Engineering, College of Chemical Engineering and Materials ScienceZhejiang University of TechnologyHangzhouChina

Personalised recommendations