Advertisement

Fibers and Polymers

, Volume 14, Issue 8, pp 1235–1247 | Cite as

Recent progress on conventional and non-conventional electrospinning processes

  • W. S. Khan
  • R. AsmatuluEmail author
  • M. Ceylan
  • A. Jabbarnia
Article

Abstract

Electrospinning is a process of producing micro- and nanoscale fibers using electrostatically charged polymeric solutions under various conditions. Most synthetic and naturally occurring polymers can be electrospun using appropriate solvents and/or their blends. Because of the fascinating properties of electrospun fibers, electrospinning has recently attracted enormous attention worldwide. Initially, this method did not receive much industrial attention due to lower production rates, costs, and lack of interest in size, shape, and flexibility of electrospun nanofibers. However, with the advancement of needleless electrospinning, multiple needles in series, near-field electrospinning techniques, and nanotechnology in particular, this is no longer an issue. This paper outlines the recent progress on the production of various sizes and shapes of fibers using conventional and non-conventional electrospinning processes (e.g., rotating drum and disc, translating spinnerets, rotating strings of electrodes in polymeric solutions, and forcespinning) and presents a complete view of electrospun fiber productions techniques and the resultant products’ applications in different fields to date.

Keywords

Conventional and non-conventional electrospinning processes Recent progress Applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Taylor, Proceedings of Royal Society of London, London, 313, 1515 (1969).Google Scholar
  2. 2.
    R. K. Bharath, Ph.D. Dissertation, Miami University, Oxford, Ohio, 2006.Google Scholar
  3. 3.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 15 (2003).Google Scholar
  4. 4.
    H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 16 (1999).CrossRefGoogle Scholar
  5. 5.
    J. H. He, Y. Q. Wan, and J. Y. Yu, Int. J. Nonlinear Sci. Numer. Simul., 5, 3 (2004).Google Scholar
  6. 6.
    J. H. Wendorff, S. Agarwal, and A. Greiner, “Electrospinning: Materials, Processing, and Applications”, Willy-VCH, Singapore, 2012.CrossRefGoogle Scholar
  7. 7.
    L. Y. Yeo and J. R. Friend, J. Experimental Nanoscience, 1, 2 (2006).Google Scholar
  8. 8.
    E. V. Kalayei, K. P. Patra, A. Bauer, C. S. Ugbolue, K. Y. Kim, and B. S. Warner, J. Adv. Mater., 36, 4 (2004).Google Scholar
  9. 9.
    W. Kataphinan, Ph.D. Dissertation, The University of Akron, Ohio, 2004.Google Scholar
  10. 10.
    D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 9 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2008).CrossRefGoogle Scholar
  12. 12.
    A. D. Vaisniene, J. Katunskis, and G. Buika, Fibers Text. East. Eur., 17, 6 (2009).Google Scholar
  13. 13.
    M. Gorji, A. A. A. Jeddi, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 125, 5 (2012).CrossRefGoogle Scholar
  14. 14.
    J. P. Chen, G. Y. Chang, and J. K. Chen, Colloid. Surface. A: Physicochem. Eng. Aspect., 317, 450 (2008).CrossRefGoogle Scholar
  15. 15.
    R. A. Thakur, C. A. Florek, J. Kohn, and B. B. Michniak, Int. J. Pharm., 364, 1 (2008).CrossRefGoogle Scholar
  16. 16.
    C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 5 (2004).Google Scholar
  17. 17.
    L. J. Levy, U.S. Patent, 4549545 (1985).Google Scholar
  18. 18.
    D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech., 41, 42 (2007).Google Scholar
  19. 19.
    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 4 (2002).Google Scholar
  20. 20.
    L. R. Xu, L. Li, C. M. Lukehart, and H. Kuai, J. Nanosci. Nanotechnol., 7, 7 (2007).Google Scholar
  21. 21.
    J. S. Kim and D. H. Reneker, Polym. Compos., 20, 1 (1999).CrossRefGoogle Scholar
  22. 22.
    P. J. Goldstein, Master’s Thesis, University of Florida, Florida, 2004.Google Scholar
  23. 23.
    H. Fong and D. H. Reneker, “Electrospinning and Formation of Nanofibers”, in Structure Formation in Polymer Fibers, (D. R. Salem Ed.), pp.4585–4592, Princeton, Hanser Gardner Publication Inc., 2000.Google Scholar
  24. 24.
    C. H. Park, C. H. Kim, L. D. Tijing, D. H. Lee, M. H. Yu, H. R. Pant, Y. Kim, and C. S. Kim, Fiber. Polym., 13, 339 (2012).CrossRefGoogle Scholar
  25. 25.
    L. Rayleigh, Philosophical Magazine Series 5, 14, 87 (1882).Google Scholar
  26. 26.
    L. Rayleigh, Proceedings of Royal Society of London, UK, 29 (1897).Google Scholar
  27. 27.
    G. Taylor, Proceedings of Royal Society of London, A 28, UK, 280, 1382 (1964).Google Scholar
  28. 28.
    G. Taylor, Proceedings of Royal Society of London, A 291 (1966).Google Scholar
  29. 29.
    A. Formhals, US Patent, 1975504 (1934).Google Scholar
  30. 30.
    P. J. Berry, US Patent, 5024789 (1991).Google Scholar
  31. 31.
    A. Formhals, US Patent, 2349950 (1944).Google Scholar
  32. 32.
    P. Baumgarten, J. Colloid Interface Sci., 36, 1 (1971).CrossRefGoogle Scholar
  33. 33.
    T. Subbiah, S. G. Bhat, W. R. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 2 (2005).CrossRefGoogle Scholar
  34. 34.
    J. Doshi, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1994.Google Scholar
  35. 35.
    J. Doshi and D. H. Reneker, J. Electrost., 35, 2 (1995).CrossRefGoogle Scholar
  36. 36.
    G. Srinivasan, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1994.Google Scholar
  37. 37.
    G. Srinivasan and D. H. Reneker, Polym. Int., 36, 2 (1995).CrossRefGoogle Scholar
  38. 38.
    I. Chun, Ph.D. Dissertation, University of Akron, Akron, Ohio, 1997.Google Scholar
  39. 39.
    H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 16 (1999).CrossRefGoogle Scholar
  40. 40.
    R. Jaeger, M. M. Bergshoef, M. C. Ibatlle, H. Schönherr, and J. G. Vancso, “Macromolecular Symposia, Rolduc Polymer Meeting 10”, p.127, Netherland, 1998.Google Scholar
  41. 41.
    R. Jaeger, H. Schönherr, and G. J. Vansco, Macromolecules, 29, 23 (1996).CrossRefGoogle Scholar
  42. 42.
    H. Fong, J. Macromol. Sci. B-Phys., 36, 2 (1997).Google Scholar
  43. 43.
    M. D. Stenoien, W. J. Drasler, R. J. Scott, and M. L. Jenson, U.S. Patent 5840240 (1998).Google Scholar
  44. 44.
    S. Zarkoob, Ph.D Disertation, University of Akron, Ohio, 1998.Google Scholar
  45. 45.
    S. Zarkoob, R. K. Eby, D. H. Reneker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004).CrossRefGoogle Scholar
  46. 46.
    L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 8 (2000).CrossRefGoogle Scholar
  47. 47.
    P. W. Gibson, H. L. S. Gibson, and D. Rivin, ALCHE Journal, 45, 1 (1999).CrossRefGoogle Scholar
  48. 48.
    M. Diaz, N. J. Pinto, J. Gao, and A. G. Mac Diarmid, “National Conference of Undergradaute Research”, University of Kentucky, Lexington, 2001.Google Scholar
  49. 49.
    J. S. Kim and D. S. Lee, Polymer, 32, 7 (2000).Google Scholar
  50. 50.
    M. Bognitzki, T. Frese, J. H. Wendorff, and A. Grenier, 219th ACS National Meeting, San Francisco, CA, PMSE-173, American Chemical Society, Wasington, D.C. 2000.Google Scholar
  51. 51.
    M. Bognitzki, T. Frese, J. H. Wendorff, and A. Greiner, Polym. Mater.: Sci. Eng., 82, 45 (2000).Google Scholar
  52. 52.
    C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, S. Tripathy, and L. Samuelson, Proceedings of the SPE 58th Annual Technical Conference, 2 (2000).Google Scholar
  53. 53.
    A. F. Spivak and Y. A. Dzenis, Appl. Phys. Lett., 73, 21 (1998).CrossRefGoogle Scholar
  54. 54.
    B. Wessling, Synthetic Metals, 93, 2 (1998).CrossRefGoogle Scholar
  55. 55.
    K. Woraphan, D. Sally, D. H. Reneker, and S. Daniel, US Patent, WO012661, 2001.Google Scholar
  56. 56.
    D. Smith, D. Reneker, A. McManus, H. Schreuder-Gibson, C. Mello, M. Sennett, and P. Gibson, US Patent, WO0127365, 2001.Google Scholar
  57. 57.
    H. Liu, Ph.D. Dissertation, University of Georgia, Athens, 2008.Google Scholar
  58. 58.
    X. Xu, Q. Yang, Y. Wang, H. Hu, X. Chen, and X. Jing, Eur. Polym. J., 42, 2081 (2006).CrossRefGoogle Scholar
  59. 59.
    C.-M. Hsu, Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA, 2003.Google Scholar
  60. 60.
    M. H. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Physics of Fluids, 13, 2221 (2001).CrossRefGoogle Scholar
  61. 61.
    M. E. T. Molares, A. G. Balogh, T. W. Cornelius, R. Neumann, and C. Trautmann, Appl. Phys. Lett., 85, 5337 (2004).CrossRefGoogle Scholar
  62. 62.
    Y. N. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett., 78, 8 (2001).Google Scholar
  63. 63.
    D. Han and A. J. Steckl, Langmuir, 25, 16 (2009).Google Scholar
  64. 64.
    X. Wang, H. Niu, X. Wang, and T. Lin, J. Nanomater., 2012, 785920 (2012).Google Scholar
  65. 65.
    W. S. Khan, R. Asmatulu, Y. H. Lin, Y. Y. Chen, and J. Ho, J. Nanotechnol., 2012, 138438 (2012).Google Scholar
  66. 66.
    A. K. Haghi and M. Akbari, Physica Status Solidi, 204, 6 (2007).Google Scholar
  67. 67.
    V. E. Kalayci and P. K. Patra, J. Adv. Mater., 36, 4 (2004).Google Scholar
  68. 68.
    J. H. He, Y. Q. Wan, and J. Y. Yu, Int. J. Nonlinear Sci. Numer. Simul., 5, 3 (2004).Google Scholar
  69. 69.
    I. Sas, R. E. Gorga, J. A. Joines, and K. A. Thoney, J. Polym. Sci., 50, 12 (2012).CrossRefGoogle Scholar
  70. 70.
    M. S. Sumitha, K. T. Shalumon, V. N. Sreeja, R. Jayakumar, S. V. Nair, and D. Menon, J. Macromol. Sci.-A: Pure and Applied Chemistry, 49, 2 (2012).Google Scholar
  71. 71.
    A. P. S. Sawhney, B. Condon, K. V. Singh, S. S. Pang, G. Li, and D. Hui, Text. Res. J., 78, 8 (2008).CrossRefGoogle Scholar
  72. 72.
    J. Zheng, A. He, J. Li, J. Xu, and C. C. Han, Polymer, 47, 20 (2006).Google Scholar
  73. 73.
    M. Kong, R. Jung, H. S. Kim, and H. J. Jin, Colloids Surf. A: Physicochem. Eng. Asp., 313–314, 411 (2008).CrossRefGoogle Scholar
  74. 74.
    M. Ma, R. M. Hill, J. L. Lowery, S. V. Fridrikh, and G. C. Rutledge, Langmuir, 21, 12 (2005).Google Scholar
  75. 75.
    K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, and K. Lozano, Material Today, 13, 11 (2010).CrossRefGoogle Scholar
  76. 76.
    S., Ramakrishna, “An Introduction to Electrospinning and Nanofibers”, World Scientific, Singapore, 2005.CrossRefGoogle Scholar
  77. 77.
    N. Nuraje, W. S. Khan, M. Ceylan, Y. Lie, and R. Asmatulu, Mater. Chem. A, 1, 1929 (2013).CrossRefGoogle Scholar
  78. 78.
    Q. Zhang, Z. Chang, M. Zhu, X. Mo, and D. Chen, Nanotechnology, 18, 115611 (2007).CrossRefGoogle Scholar
  79. 79.
    P. E. Slade and L. T. Jenkins, “Thermal Characterization Techniques,” Marcel Dekker, New York, 1970.Google Scholar
  80. 80.
    J. M. Biercuka, C. M. Liaguno, M. Radosavljevic, K. J. Hyunc, T. A. Johnson, and E. J. Fischer, Appl. Phys. Lett., 80, 15 (2002).Google Scholar
  81. 81.
    D. Hansen and H. C. Chong, J. Polym. Sci.-A: General Papers, 3, 2 (1965).Google Scholar
  82. 82.
    W. S. Khan, R. Asmatulu, and M. B. Yildirim, J. Aerospace Eng., 25, 3 (2012).CrossRefGoogle Scholar
  83. 83.
    F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, S. J. Park, H. Kim, and H. Y. Kim, Fiber. Polym., 11, 384 (2010).CrossRefGoogle Scholar
  84. 84.
    A. López-Rubio, E. Sanchez, S. Wilkanowicz, Y. Sanz, and J. M. Lagaron, Food Hydrocolloids, 28, 1 (2012).CrossRefGoogle Scholar
  85. 85.
    D. H. Reneker and I. Chun, J. Nanotechnol., 7, 3 (1996).CrossRefGoogle Scholar
  86. 86.
    H. Niu and T. Lin, Journal of Nanomaterials, Vol. 2012 (2012), Article ID 725950, p. 13.Google Scholar
  87. 87.
    P. Gupta, R. Asmatulu, G. Wilkes, and R. O. Claus, J. Appl. Polym. Sci., 100, 4935 (2006).CrossRefGoogle Scholar
  88. 88.
    A. Seema, W. H. Joachim, and G. Andreas, Polymer, 49, 26 (2008).Google Scholar
  89. 89.
    V. Beny, V. Horacio, and L. Karen, Polym. Eng. Sci., 52, 10 (2012).Google Scholar
  90. 90.
    F. Cengiz-Callioglu, O. Jirsak, and M. Dayik, Fiber. Polym., 13, 1266 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • W. S. Khan
    • 1
  • R. Asmatulu
    • 1
    Email author
  • M. Ceylan
    • 1
  • A. Jabbarnia
    • 1
  1. 1.Department of Mechanical EngineeringWichita State UniversityWichitaUSA

Personalised recommendations