Advertisement

Fibers and Polymers

, Volume 14, Issue 6, pp 909–914 | Cite as

Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride

  • Su-jin Kim
  • Jinho Jang
Article

Abstract

1-Ally-3-methylimidazolium chloride ([AMIM]Cl) was successfully synthesized and was used as a green spinning solvent for cellulose. The celluloses of various degrees of polymerization (DP) were dissolved in the [AMIM]Cl to obtain 5 % (w/w) cellulose solutions, which were regenerated to cellulose fibers through wet spinning process. Of three different regenerated cellulose fibers with different DPs, a DP of 2,730 was gave the strongest regenerated fiber without drawing having a tensile strength of 177 MPa and an elongation at break of 9.6 % respectively, indicating that celluloses of higher molecular weight can be entangled and oriented more easily. Also maximum draw ratio of the as-spun fibers increased from 1.2 to 1.7 with increasing degree of polymerization leading to a tensile strength and modulus of 207 MPa and 48 GPa, respectively. Particularly the tensile modulus was substantially higher than those of lyocell and high performance viscose fibers of 20 GPa or less. The higher DP of pristine cellulose was critical in increasing the mechanical properties such as tensile strength and elongation at break of the as-spun fibers coupled with higher tensile modulus after drawing.

Keywords

Cellulose Ionic liquid [AMIM]Cl Wet-spinning process Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Andey, M. R. Nimlos, J. W. Brady, and T. D. Foust, Science, 315, 5813 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Ohno and Y. Fukaya, Chem. Lett., 38, 2 (2009).CrossRefGoogle Scholar
  3. 3.
    D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005).CrossRefGoogle Scholar
  4. 4.
    Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, 3479 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Cai, H. Zhang, Q. Guo, H. Shao, and X. Hu, J. Appl. Polym. Sci., 115, 1047 (2010).CrossRefGoogle Scholar
  6. 6.
    J. Mussig, “Industrial Applications of Natural Fibres; Structure, Properties and Technical Applications”, pp.13–22, Wiley, Chichester, UK, 2010.CrossRefGoogle Scholar
  7. 7.
    H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).CrossRefGoogle Scholar
  8. 8.
    C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  9. 9.
    M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).CrossRefGoogle Scholar
  10. 10.
    K. J. Edgar, K. M. Arnold, W. W. Blount, J. E. Lawniczak, and D. W. Lowman, Macromolecules, 28, 4122 (1995).CrossRefGoogle Scholar
  11. 11.
    J. F. Masson and R. S. J. Manley, Macromolecules, 24, 5914 (1991).CrossRefGoogle Scholar
  12. 12.
    S. Fischer, W. Voigt, and K. Fischer, Cellulose, 6, 213 (1999).CrossRefGoogle Scholar
  13. 13.
    K. Hattori, J. A. Cuculo, and S. M. Hudson, J. Polym. Sci. Part A: Polym. Chem., 40, 601 (2002).CrossRefGoogle Scholar
  14. 14.
    J. P. Mikkola, A. Kirilin, J. C. Tuuf, A. Pranovich, B. Holmbom, L. M. Kustov, D. Y. Murzin, and T. Salmi, Green Chem., 9, 1229 (2007).CrossRefGoogle Scholar
  15. 15.
    M. Freemantle, “An Introduction to Ionic Liquids”, pp.1–11, RSC Publishing, Cambridge, UK, 2010.Google Scholar
  16. 16.
    D. M. Phillips, L. F. Drummy, D. G. Conrady, D. M. Fox, R. R. Naik, M. O. Stone, P. C. Trulove, H. C. D. Long, and R. A. Mantz, J. Am. Chem. Soc., 126, 14350 (2004).CrossRefGoogle Scholar
  17. 17.
    V. A. Cocalia, K. E. Gutowski, and R. D. Rogers, Chem. Rev., 250, 755 (2006).Google Scholar
  18. 18.
    R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).CrossRefGoogle Scholar
  19. 19.
    B. Kosan, C. Michels, and F. Meister, Cellulose, 15, 676 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Zang, Q. Su, Y. Mo, B. Cheng, and S. Jun, Ultrason. Sonochem., 17, 749 (2010).CrossRefGoogle Scholar
  21. 21.
    Y. Fukaya, A. Sugimoto, and H. Ohno, Biomacromolecules, 7, 3295 (2006).CrossRefGoogle Scholar
  22. 22.
    T. Mizumo, E. Marwanta, N. Matsumi, and H. Ohno, Chem. Lett., 33, 1360 (2004).CrossRefGoogle Scholar
  23. 23.
    K. J. Kim and B. S. Yun, J. Kor. Soc. Text. Eng. Chem., 23, 177 (1986).Google Scholar
  24. 24.
    M. L. Nelson and R. T. O’Connor, J. Appl. Poly. Sci., 8, 1325 (1964).CrossRefGoogle Scholar
  25. 25.
    G. Cheng, P. Varanasi, C. Li, H. Liu, Y. B. Melnichenko, B. A. Simmons, M. S. Kent, and S. Singh, Biomacromolecules, 12, 933 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Raymond, A. Kvick, and H. Chanzy, Macromolecules, 28, 8422 (1995).CrossRefGoogle Scholar
  27. 27.
    F. Kolpak and J. Blackwell, Macromolecules, 9, 273 (1976).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Nano-Bio Textile EngineeringKumoh National Institute of TechnologyGumiKorea

Personalised recommendations