Advertisement

Fibers and Polymers

, Volume 14, Issue 4, pp 660–668 | Cite as

Meltblown nanofiber media for enhanced quality factor

  • Rohit UppalEmail author
  • Gajanan Bhat
  • Chris Eash
  • Kokouvi Akato
Article

Abstract

Nanofibers definitely hold great advantage and promise in filtration as they have very high specific surface area, which ensures greater probability of capturing the particles and hence, the filtration efficiency of the nanofiber filter media is high. Electrospun nanofibers are prohibitively expensive due to extremely low production rate. With recent advances in melt blowing technology, nanofibers could be produced at production rate few orders of magnitude higher than that of conventional single syringe electrospinning and hence, quite cost effective. Influence of air pressure and die to collector distance (DCD) were studied on the number average fiber diameter for the nanofibers as well as the performance properties of the nonwoven webs, each factor at three discrete levels. The nanofibers were as fine as 260 nm. A very encouraging observation of the study is very high values of quality factor observed for nanofiber nonwoven filter media. In order to compare the filtration efficiency of different nanofiber nonwoven media samples with different basis weight, a novel term of specific filtration efficiency is proposed and was found that the specific filtration efficiency with the increase in DCD or air pressure.

Keywords

Melt blowing Nanofibers Filter media Quality factor Specific filtration efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Zhang, S. Shim, and J. Kim, Materials and Design, 30, 3659 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Kaur, R. Gopal, W. J. Ng, S. Ramakrishna, and T. Matsuura, MRS Bulletin, 33, 21 (2008).CrossRefGoogle Scholar
  3. 3.
    C. Dickenson in “Filters and Filtration Handbook”, Third Edition, Elsevier Advanced Technology, Oxford, UK, 1992.Google Scholar
  4. 4.
    W. W. F. Leung, C. H. Hung, and P. T. Yuen, Separation and Purification Technology, 71, 30 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Podgórski, A. Ba azy, and L. Gradón, Chem Eng. Sci., 61, 6804 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Frenot and I. S. Chronakis, Current Opinion in Colloid and Interface Science, 8, 64 (2003).CrossRefGoogle Scholar
  7. 7.
    T. H. Grafe and K. M. Graham, “Nanofiber Webs from Electrospinning in Nonwovens in Filtration — Fifth International Conference”, Stuttgart, Germany, March, 2003.Google Scholar
  8. 8.
    K. W. Lee and B. Y. H. Liu, Journal of the Air Pollution Control Association, 30, 377 (1980).CrossRefGoogle Scholar
  9. 9.
    L. Li, M. W. Frey, and T. B. Green, Journal of Engineered Fibers and Fabrics, 1, 1 (2006).Google Scholar
  10. 10.
    D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).CrossRefGoogle Scholar
  11. 11.
    G. T. Kim, Y. C. Ahn, and J. K. Lee, Korean J. Chem. Eng., 25, 368 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Zimmerman, H. F. Mark, and N. M. Bikales in “Encyclopedia of Polymer Science and Engineering, Wiley”, New York, 1988.Google Scholar
  13. 13.
    Y. J. Ryu, H. Y. Kim, K. H. Lee, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003).CrossRefGoogle Scholar
  14. 14.
    A. Greiner and J. H. Wendorff, Angew Chem Int., 46, 5670 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Ward, Filtration & Separation, 22 (2005).Google Scholar
  16. 16.
    R. S. Barhate and S. Ramakrishna, J. Membr. Sci., 296, 1 (2007).CrossRefGoogle Scholar
  17. 17.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  18. 18.
    D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).CrossRefGoogle Scholar
  19. 19.
    T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polymer Sci., 96, 557 (2005).CrossRefGoogle Scholar
  20. 20.
    T. Jaroszczyk, Z. G. Liu, S. W. Schwartz, C. E. Holm, K. M. Badeau, and E. Janikowski, “Direct Flow Air Filters—a New Approach to High Performance Engine Filtration in FILTECH 2005 Conference Proceedings”, pp.234–244, Wiesbaden, 11–13 October, 2005.Google Scholar
  21. 21.
    V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer, 46, 7191 (2005).CrossRefGoogle Scholar
  22. 22.
    G. S. Bhat and S. R. Malkan, Polymer Laid Nonwovens in “Handbook of Nonwovens” (Steve Russel Ed.), pp.143–200, Woodhead Publishers, 2007.Google Scholar
  23. 23.
    A. Fabbricante, J. S. Fabbricante, and T. J. Fabbricante, US Patent, 7,857,608 (2010).Google Scholar
  24. 24.
    J. Wang, S. C. Kim, and D. Y. H. Pui, J. Aerosol Scie., 39, 323 (2008).CrossRefGoogle Scholar
  25. 25.
    K. M. Yun, C. J. Hogan Jr., Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama, Chem. Eng. Sci., 62, 4751 (2007).CrossRefGoogle Scholar
  26. 26.
    R. Uppal, G. N. Ramaswamy, C. Arnold, R. Goodband, and Y. Wang, J. Biom. Mater. Res. Part B-Appl. Biomat., 97B, 20 (2011).CrossRefGoogle Scholar
  27. 27.
    TSI Model 8110 Automated Filter Tester Operation and Service Manual, 1989.Google Scholar
  28. 28.
    R. C. Brown, “Aerosol Filtration, An Integrated Approach to the Theory and Applications of Fibrous Filters”, Pergamon Press, Oxford, 1993.Google Scholar
  29. 29.
    S. Dhaniyala and B. Y. H. Liu, Aerosol Sci. Technol., 30, 333 (1999).CrossRefGoogle Scholar
  30. 30.
    R. G. Dorman, Filtration in “Aerosol Science” (C. N. Davies Ed.), pp.195–222, Academic Press, London, 1966.Google Scholar
  31. 31.
    W. C. Hinds in “Aerosol Technology”, Wiley-Interscience, New York, 1999.Google Scholar
  32. 32.
    Q. Zhang, J. Welch, H. Park, W. Chang-Yu, W. Sigmund, and J. C. M. Marijnissen, J. Aerosol Sci., 41, 230 (2010).CrossRefGoogle Scholar
  33. 33.
    K. K. Leonas and C. R. Jones, Journal of Textile and Apparel, Technology and Management, 3, 1 (2003).Google Scholar
  34. 34.
    D. H. Tan, C. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newtonian Fluid Mech., 165, 892 (2010).CrossRefGoogle Scholar
  35. 35.
    A. L. Yarin, S. Sinha-Ray, and B. Pourdeyhimi, Polymer, 52, 2929 (2011).CrossRefGoogle Scholar
  36. 36.
    Eric M. Moore, Robert L. Shambaugh, and Dimitrios V. Papavassiliou, International Nonwovens Journal, 13, 42 (2004).Google Scholar
  37. 37.
    Y. Lee and L. C. Wadsworth, Polym. Eng. Sci., 30, 1413 (1990).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rohit Uppal
    • 1
    Email author
  • Gajanan Bhat
    • 1
  • Chris Eash
    • 1
  • Kokouvi Akato
    • 1
  1. 1.UTNRLThe University of TennesseeKnoxvilleUSA

Personalised recommendations