Advertisement

Fibers and Polymers

, Volume 13, Issue 10, pp 1266–1271 | Cite as

Electric current in polymer solution jet and spinnability in the needleless electrospinning process

  • Funda Cengiz-Çallioğlu
  • Oldrich Jirsak
  • Mehmet Dayik
Article

Abstract

In this study, the electric current of polymer solution jet was measured during a needleless rod electrospinning process using memory oscilloscope recording. According to the results, electric current of solution jet increases as the polyurethane (PU) and tetraethylammonium bromide (TEAB) salt concentration increase. Especially at 17.5 and 20 wt% PU concentrations, electric current increases dramatically with TEAB concentration. Also, there is a strong relationship between the electric current in the solution jet, spinnability and the spinning performance of the roller electrospinning. Thus, the spinnability of polymer solutions can be easily estimated using this simple method.

Keywords

Polymer solution Electric current Oscilloscope Needleless electrospinning Nanofibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Gilbert, “De Magnete (1600)”, Transl. P. F. Mottelay, Dover, UK, 1958.Google Scholar
  2. 2.
    A. Nollet, “Recherches Sur Les Causes Particulieres des Phenomenes Electrigues”, Les Freres Guerin, Paris, 1749.Google Scholar
  3. 3.
    F. R. S. Rayleigh, Philos. Mag., 44, 184 (1882).Google Scholar
  4. 4.
    J. Zeleny, Phys. Rev., 3, 69 (1914).CrossRefGoogle Scholar
  5. 5.
    A. Formhals, U. S. Patent, 1975504 (1934).Google Scholar
  6. 6.
    H. L. Simons, U. S. Patent, 3280229 (1966).Google Scholar
  7. 7.
    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pol. Phys., 19, 909 (1981).CrossRefGoogle Scholar
  8. 8.
    A. Bornat, U. S. Patent, 4689186 (1987).Google Scholar
  9. 9.
    J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).CrossRefGoogle Scholar
  10. 10.
    J. Kleinmeyer, J. Deitzel, and J. Hirvonen, U. S. Patent, 20020089094 (2002).Google Scholar
  11. 11.
    A. L. Yarin and E. Zussman, Polymer, 45, 2977 (2004).CrossRefGoogle Scholar
  12. 12.
    O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, Nanotechnology, 17, 1123 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Varesano, F. Rombaldoni, R. A. Carletto, G. Mazzuchetti, and C. Tonin, “AUTEX 2010, 10th World Textile Conference Proceedings”, p.95, 21–23 June, Vilnius, Lithuania, 2010.Google Scholar
  14. 14.
    D. Lukas, A. Sarkar, L. Martinova, K. Vodsed’alkova, D. Lubasova, J. Chaloupek, P. Pokorny, P. Mikes, J. Chvojka, and M. Komarek, Textile Progress, 41, 59 (2009).CrossRefGoogle Scholar
  15. 15.
    G. I. Taylor, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 280, 383 (1964).CrossRefGoogle Scholar
  16. 16.
    S. Torres and D. Lukas, “Nano’ 05 Proceedings”, 8–10 November, Brno, Czech Republic, 2005.Google Scholar
  17. 17.
    D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).CrossRefGoogle Scholar
  18. 18.
    O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, U. S. Patent, WO2005024101 (2005).Google Scholar
  19. 19.
    Y. Liu and J.-H. He, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 393 (2007).Google Scholar
  20. 20.
    Y. Liu, J.-H. He, and J.-Y. Yu, J. Phys.: Conference Series, 96, 012001 (2008).CrossRefGoogle Scholar
  21. 21.
    R. Yang, J. He, L. Xu, and J. Yu, Polymer, 50, 5846 (2009).CrossRefGoogle Scholar
  22. 22.
    S. Tang, Y. Zeng, and X. Wang, Polym. Eng. Sci., DOI: 10.1002/pen.21767, 2252–2257 (2010).Google Scholar
  23. 23.
    Y. Ying, J. Zhidong, L. Qiang, and G. Zhicheng, Conference on Electrical Insulation and Dielectric Phenomena, pp.453–456, 2005.Google Scholar
  24. 24.
    R. Samatham and K. J. Kim, Polym. Eng. Sci., 46, 954 (2006).CrossRefGoogle Scholar
  25. 25.
    N. Li, X.-H. Qin, L. Lin, and S.-Y. Wang, Polym. Eng. Sci., 48, 2362 (2008).CrossRefGoogle Scholar
  26. 26.
    S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 144502-1–144502-4 (2003).CrossRefGoogle Scholar
  27. 27.
    J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Polymer, 47, 4789 (2006).CrossRefGoogle Scholar
  28. 28.
    P. Pokorny and O. Jirsak, “TexSci10”, 6–8 September, TU, Liberec, Czech Republic, 2010.Google Scholar
  29. 29.
    P. Pokorny, P. Mikes, and D. Lukas, “Nanocon”, 12–14 October, Olomouc, Czech Republic, 2010.Google Scholar
  30. 30.
    F. Cengiz-Çallıoğlu, O. Jirsak, and M. Dayık, Text. Res. J. DOI:10.1177/0040517512447587 (2012).Google Scholar
  31. 31.
    D. Lukas, “5th World Textile Conference, AUTEX 2005 Proceedings”, pp.606–611, Slovenia, 2005.Google Scholar
  32. 32.
    F. Cengiz-Çallıoğlu, Ph. D. Dissertation, Süleyman Demirel University, Isparta, Turkey, 2011.Google Scholar
  33. 33.
    F. Cengiz-Çallıoğlu, O. Jirsak and M. Dayık, “Nano TR 7th Nanoscience and Nanotechnology Conference Proceedings”, 27 June–1 July, Istanbul, Turkey, 2011.Google Scholar
  34. 34.
    M. Gussow, “Basic Electricity”, Schaum’s Outline Series, USA, 2007.Google Scholar
  35. 35.
    F. Cengiz-Çallıoğlu, O. Jirsak, and M. Dayık, “ITMC-3rd Edition of the International Conference on Intelligent Textiles&Mass Customisation Proceedings”, p.90, Casablanca-Fas, 2011.Google Scholar
  36. 36.
    P. K. Bhattacharjee, T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge, J. Appl. Phys., 107, 044306 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Funda Cengiz-Çallioğlu
    • 1
  • Oldrich Jirsak
    • 2
  • Mehmet Dayik
    • 1
  1. 1.Textile Engineering Department, Engineering FacultySüleyman Demirel UniversityÇünür, IspartaTurkey
  2. 2.Nonwoven Department, Textile Engineering FacutyTechnical University of LiberecLiberecCzech Republic

Personalised recommendations