Fibers and Polymers

, Volume 13, Issue 10, pp 1254–1258 | Cite as

Preparation and blood compatibility of electrospun PLA/curcumin composite membranes

  • Yan Chen
  • Jie Lin
  • Yuqin Wan
  • Yanna Fei
  • Hongbo WangEmail author
  • Weidong Gao


In this article, curcumin-loaded electrospun Polylactic acid (PLA) composite membranes were prepared. Curcumin with different concentrations (1, 3 and 5 wt%) was loaded to the PLA membranes to study its anticoagulant property as a drug-eluting stent. X-ray diffraction (XRD) characterization of the prepared membranes indicates that PLA and curcumin mix together well through the method of electrospinning and the composite membrane has larger crystallinity than that of PLA membrane. The in vitro blood compatibility of curcumin-eluting stents was investigated by static platelet adhesion and blood coagulation time (APTT and PT) tests, revealing that the blood compatibility of composite membranes is superior to the pure PLA membrane, and the blood compatibility significantly improves with curcumin concentration increasing by dint of observing SEM images and calculating the inhibition rate of platelet aggregation. Moreover, PLA/curcumin membrane can effectively prolong the blood coagulation time compared with the plasma, and the blood coagulation time of composite membranes improves significantly as curcumin concentration increasing.


Electrospun Poly(lactic acid) (PLA) Curcumin Blood compatibility Membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Waksman, Cardiovasc. Radiat. Med., 3, 226 (2002).CrossRefGoogle Scholar
  2. 2.
    C. J. Pan, J. J. Tang, Z. Y. Shao, J. Wang, and N. Huang, Colloids Surf., B, 59, 105 (2007).CrossRefGoogle Scholar
  3. 3.
    K. T. Nguyen, N. Shaikh, K. P. Shukla, S. H. Su, R. C. Eberhart, and L. P. Tang, Biomaterials, 25, 5333 (2004).CrossRefGoogle Scholar
  4. 4.
    B. L. Hoeven, N. M. M. Pires, H. M. Warda, P. V. Oemrawsingh, B. J. M. Vlijmen, and P. H. A. Quax, Int. J. Cariol, 99, 10 (2005).Google Scholar
  5. 5.
    C. M. Mahoney, D. V. Patwardhan, and M. K. McDermott, Appl. Surf. Sci., 252, 6554 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Y. Song, C. Yao, and X. S. Li, Chin. J. Polym. Sci., 28, 171 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Y. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss, and P. I. Lelkes, Biomaterials, 26, 6000 (2005).Google Scholar
  8. 8.
    B. Almeria, W. W. Deng, T. M. Fahmy, and A. Gomez, J. Colloid Interface Sci., 343, 126 (2010).CrossRefGoogle Scholar
  9. 9.
    R. B. Metter, J. L. Ifkovits, K. Hou, L. Vincent, B. Hsu, L. Wang, R. L. Mauck, and J. A. Burdick, Acta Biomaterialia, 6, 1219 (2010).CrossRefGoogle Scholar
  10. 10.
    T. J. Sill and H. A. Recum, Biomaterials, 29, 1996 (2008).CrossRefGoogle Scholar
  11. 11.
    X. Y. Zhao, Mod. Chem. Ind., 29, 53 (2009).Google Scholar
  12. 12.
    L. Shen and H. F. Ji, Spectrochim. Acta, Part A, 67, 619 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. Henrotiny, A. L. Clutterbuck, D. Allaway, E. M. Lodwig, P. Harris, M. Mathy-Hartert, M. Shakibaei, and A. Mobasheri, Osteoarthritis and Cartilage, 18, 143 (2010).Google Scholar
  14. 14.
    R. Kumar, N. Kasoju, and U. Bora, Nanomedicine, 6, 153 (2010).CrossRefGoogle Scholar
  15. 15.
    C. B. Wang and D. Z. Gao, Adv. Cardiovasc D, 26, 616 (2005).Google Scholar
  16. 16.
    J. J. Tang, J. Wang, C. J. Pan, L. Ren, and N. Huang, J. Biomed. Eng., 25, 114 (2008).Google Scholar
  17. 17.
    C. J. Pan, J. J. Tang, Y. J. Weng, J. Wang, and N. Huang, J. Controlled Release, 116, 43 (2006).CrossRefGoogle Scholar
  18. 18.
    Y. Chen, J. Lin, Y. N. Fei, H. B. Wang, and W. D. Gao, Fiber. Polym., 11, 1130 (2010).Google Scholar
  19. 19.
    Y. Chang, Y. J. Shih, R. C. Ruaan, A. Higuchi, W. Y. Chen, and J. Y. Lai, J. Membr. Sci., 309, 167 (2008).CrossRefGoogle Scholar
  20. 20.
    H. T. Wang, L. Yang, X. H. Zhao, T. Yu, and Q. Y. Du, Chin J. Chem. Eng., 17, 325 (2009).Google Scholar
  21. 21.
    D. F. Shao, Q. F. Wei, L. W. Zhang, Y. B. Cai, and S. D. Jiang, Appl. Surf. Sci., 254, 6546 (2008).Google Scholar
  22. 22.
    X. Liu, H. Q. Gu, Z. R. Zeng, and H. D. Shi, Dia. Artif. Org. China, 18, 8 (2007).Google Scholar
  23. 23.
    H. F. Xie and Z. Y. Chen, J. Occup. Health Damage, 20, 298 (2005).Google Scholar
  24. 24.
    P. Manikandan, M. Sumitra, S. Aishwarya, B. M. Manohar, B. Lokanadamc, and R. Puvanakrishnan, Int. J. Biochem Cell B, 36, 1976 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yan Chen
    • 1
  • Jie Lin
    • 2
  • Yuqin Wan
    • 1
  • Yanna Fei
    • 1
  • Hongbo Wang
    • 1
    Email author
  • Weidong Gao
    • 1
  1. 1.Key Laboratory of Science & Technology of Eco-textiles Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.People’s Liberation Army 101 HospitalWuxiChina

Personalised recommendations